Overview of an application of remote sensing for agriculture and drought monitoring

Wataru Takeuchi, Ph. D.

Associate Professor Institute of Industrial Science University of Tokyo, Japan

July 9, 2013 @ Hanoi, Vietnam

Wataru Takeuchi, Ph. D

- Research interests
 - Remote sensing and GIS
 - Global carbon cycling
 - Global land cover and land use change
 - Management and policy for terrestrial ecosystems
- Academic background and career
 - 1999: B. Eng., Civil Engineering, U-Tokyo
 - 2001: M. Eng., Civil Engineering, U-Tokyo
 - 2004: Dr. Eng., Civil Engineering, U-Tokyo
 - 2004 2006: Research Associate, IIS, U-Tokyo
 - 2007 2010: Assistant Professor, IIS, U-Tokyo
 - 2007 2009: Visiting Assistant Professor, Asian Institute of Technology), Thailand
 - 2010 -: Associate Professor, IIS, U-Tokyo
 - 2010 2012: Director, JSPS Bangkok office

What we will learn in two days

- Overview of remote sensing and GIS technologies for agriculture monitoring
 - **MODIS, MTSAT, GSMaP, AMSR-E**
- Drought monitoring methods and implementation NDVI, KBDI, SPI
- Demonstrate the case study on web-system
 - how to make drought map
 - *interpret drought information to give an early warning*
- 🗯 Cost-benefit analysis
 - to evaluate the benefit of introducing counter measure against droughts for an irrigation facility
 - estimate possible future economic loss due to droughts

Need for better information

Importance of rice paddy for Asian life

- 90 % of paddy fields in the world are in Asian countries and they are important as a staple food source.
- Source of atmospheric methane CH₄ [Wessmann, 2003].
- Important variable for modeling of regional biochemical cycle and climate [Dickinson, 1995].
- The improved understanding of paddy field distribution over large spatial scale has increased the interest in the above mentioned issues.

Vietnam Feels the Heat of a 100-Year Drought

By MARTHA ANN OVERLAND / HANOI Thursday, Mar. 04, 2010

Related

Photos

World Water Crisis

Newsfeed

- Did The 'Botox Mom' Lie About Giving Her 8-Year-Old Daughter Injections?
- 'Rock of Ages' Producers Turn Florida's 'Mount Trashmore' into Hollywood Sign
- Is Normal Beer Too Manly For You? Carlsberg Develops 'Gender Newtrol' Brand

The dried-up bed of the Red River, near Long Bien Bridge in Hanoi on Dec. 1, 2009 Nguyen Huy Kham / Reuters

Every year, even at the peak of V

0

Every year, even at the peak of Vietnam's dry season, when the Red River is at its lowest, Hanoi's skilled captains manage to negotiate their flat-bottomed boats through its shallow waters. But this year, with a drought gripping the entire country and water levels at record

to get a FREE gift

Asia and Africa are very prone to natural disasters

Number of persons reported affected by natural disasters in 2009

Top 10 countries by the number of reported events in 2008

[EMDAT, 2009]

Type of droughts

Meteorological droughts (everyday in 4km)

- GSMaP SPI (rainfall)
- **MTSAT KBDI** (rainfall + land surface temperature)
- Agricultural droughts (16days in 250m)
 - MODISVCI (vegetation index)
 - MODISTCI (thermal index)
 - MODISVHI (vegetation+thermal index)
- Hydrological droughts (everyday in 10km)
 - **AMSR-E LSWC** (land surface water coverage)
- If we have a prediction of the above indices based on weather forecasting, it is called a potential drought.

Framework of paddy mapping

Rice plant morphology

Days after planting

MODIS drought codes

Vegetation Condition Index (VCI) associates with moisture condition of vegetation:

$$VCI = 100x \frac{EVI - EVI_{\min}}{EVI_{\max} - EVI_{\min}}$$

Thermal Condition Index (TCI) associates with thermal condition of vegetation:

$$TCI = 100x \frac{LST_{\max} - LST}{LST_{\max} - LST_{\min}}$$

Vegetation Health Index (VHI) represents overall vegetation health: VHI VHI

[Kogan, 2002]

MODIS monthly composites have no clouds and well captures phenoloay

Normalized VSW indices

NDVI = (NIR - VIS) / (NIR + VIS)(1) NDSI = (SWIR - NIR) / (SWIR + NIR)(2) NDWI = (VIS - SWIR) / (VIS + SWIR)(3)

where VIS: Visible (630nm, channel1) NIR: Near infrared (860nm, channel2) SWIR: Shortwave infrared (1620nm, channel 6)

SWIR wavelength is effective to monitor moisture conditions on land surface

- •Water stress on tree canopy with Landsat TM [Tucker, 1980]
- •Moisture on a leaf in laboratory measurement [Cibula, 1992]
- •Land surface water condition with MODIS [Gao, 1996]

MODIS VSW

MODIS VNIR

MODIS VSW

MODIS VNIR

agricultural patterns in Northeast Thailand MODIS VCI captures 2010

GCOM-W1 "SHIZUKU" was successfully launched on May 18, 2012 (JST).

AMSR-E and AMSR2 well captures SST, sea ice and land surface water coverage

Normalized Polarization Index (NDPI)

[Takeuchi, 2008]

Production of "GSMaP" from Multi-satellite Data

GSMaP: Global Satellite Mapping of Precipitation

Landsat image (30m)

1.10

B

Harvest

Soil moisture measurement

7 11

Buffalo

Flooding

Field server

Vegetation cover (Daily) Water cover (hourly)

[Hirafuji, 2007]

Ground water measurement at Sukhothai in Central Thailand

50m

200m

E99.702

50m

17.064N, 99.704E

water resevoir

50m

irrigation canal

Image © 2010 DigitalGlobe © 2010 Tele Atlas

导日: 2007 年 11 月 23 日

200 m

緯度 17.064006° 経度 99.703987° 標高 58 m

高度 752 m

Q001

Rice field in Khon Kaen (Oct. 8, 2011 to Nov. 8, 2011)

Surface water storage and flow

- KBDI index are used to compute the balance between evapotranspiration and precipitation. [Keetch et. al, 1965]
- Presently, this index is derived from satellite observation:
 - Iand surface temperature (LST) from MTSAT received at IIS/U-Tokyo
 - rainfall from global satellite mapping (GSMaP) provided by JAXA EROC.

JAXA/EORC Global Rainfall Watch

1-8 August 2011 (6-hourly) - Typhoon No.9 in 2011 "MUIFA" can be seen near Okinawa, Japan.

Rain 0.1 0.5 1.0 2.0 3.0 5.0 10.0 15.0 20.0 25.0 30.0 [mm/hr]

<u>0.1-deg</u> and <u>hourly</u> global rainfall product available <u>4-hour after observation</u> via internet.

http://sharaku.eorc.jaxa.jp/GSMaP/

Keetch-Byram Drought Index (KBDI)

$$dQ = \left[\frac{800-Q}{1+10.88}\exp(.0486T) - 8.30 \ d\tau \\ \times 10^{-3} \\ 1 + 10.88\exp(-.0441R)\right]$$

where T: maximum daily temperature (F) R: annual rain fall (inch) [Kee

[Keetch et. al, 1965]

- The rate of moisture loss in a forested area depends on the vegetation density.
- The rate of moisture loss from soil is determined by evapotranspiration relations.
- The depletion of soil moisture with time follows an exponential curve.
- The depth of the soil layer considered has a field capacity of eight inches of available water.

central highland MODIS VCI captures 2007 2 patterns agricultural

KBDI captures 2007 drought offset in central highland

KBDI based drought offset in MuonMaThuot

Monthly drought index map from 2007 to 2012 (Jan-Dec from left to right)

Drought offset in Hanoi and ThanhPhoVinh

ThanhPhoVinh (18.3N, 105.7E)

2007 → 2008 → 2009 → 2010 - -

Drought offset in BuonMaThuot and CanTho

CanTho (10.8N, 105.2E)

2007 ____ 2008 ____ 2009 ___ 2010 ____

Drought onset/offset timing synchronized via KBDI and LSWC in BuonMaThuot

Higher KBDI in rice growing period causes loss of rice productivity

[Hosoya, 2011]

Cost and benefit analysis for irrigation facility development

Country	Total cost (JPY)	Area (ha)	Cost (JPY/ha)
Thailand	4,800,000,000	48,000	100,000
Indonesia	6,953,000,000	25,589	271,718
Vietnam	4,874,000,000	15,700	310,446

Suppose project life cycle is 20 years,

[ODA, 2010]

Average cost = 260,000 (JPY/ha) Target area in Indonesia = 2,660,00 (ha) Total cost = 693,753,870,000 (JPY) + Depreciation expense 424,275,368,288 (JPY)

[Hosoya, 2011]

Cost and benefit analysis for irrigation facility development

based on the assumption that
rice area does not change in 20 years
rice price is constant (4000Rp/kg)
drought occurs at the same frequency from
2007 to 2011 over the next 20 years
rice yield growth rate are:
0.98 in drought year at rain-fed rice field

•1.02 in normal year at irrigated rice field

To compute rice yield over 20 years in two cases:
•no development, let rice field as rain-fed
•with development, irrigation facility at rice field

Total benefit = 419,364,046,532 (JPY) < Total cost

[Hosoya, 2011]

Concluding remarks

- The new procedure for depicting a continuous field of paddy cover map using MODIS and AMSR-E derived metrics is an improvement over the past efforts using AVHRR data.
- The un-mixing approach seems to work compared with traditional discontinuous classification method.
- The metrics was able to limit the inclusion of atmospheric contamination.
- The data during the early-planting (water) and growing (rice plant) are important for paddy field mapping.

Concluding remarks (cont'd)

- South MODIS based drought codes and KBDI can monitor areas of climatological and agricultural drought.
- KBDI represents both LST and precipitation anomaly and well capture a drought onset date.
- KBDI is possibly related to rice production, however, there is no clear evidence that proves the correlation at the moment.
- KBDI can be applied for a future prediction if we incorporate a weather forecast results including LST and precipitation (coming soon).

System configuration of web-based drought monitoring in GMS

Satellite-based drought monitoring and warning system in Greater Mekong Subregion (GMS) - Vietnam

-mail wataru Dris.u-tokyo.ac.3p

Practical use for your operational job and study

- I. Daily use
 - a) Drought warning statistics -> I, 2, 3
 - b) Understand the situation (how long and where) -> 6, 7
- 2. Annual use
 - a) Identify severe drought areas on a map -> 4
- 3. Multiple year use
 a) Understand the drought
 trend on a map -> 5

paddy.iis.u-tokyo.ac.jp/GMS/Vietnam/

Thank you

Wataru Takeuchi, Ph. D. Institute of Industrial Science University of Tokyo, Japan URL: <u>http://wtlab.iis.u-tokyo.ac.jp/~wataru/</u> E-mail: <u>wataru@iis.u-tokyo.ac.jp</u>