

Institute of Industrial Science, The University of Tokyo, Japan

Risk assessment of rail infrastructure in India to support business continuity plan

Dheeraj JOSHI, Wataru TAKEUCHI Institute of Industrial Science, The University of Tokyo

Abstract: Rail infrastructure in India is the main transport mode for passenger and freight transportation. But rail infrastructure assets are frequently exposed to multi-hazards and disruptions like disasters have the potential to interrupt the organization's entire operations and preventing them from continuing the business in a normal way. The SDG 11 and the Sendai Framework for Disaster Risk Reduction calls for understanding risks through risk assessments towards avoiding frequent disruptions in operations and losses to rail business due to disasters. Risk to existing railway infrastructure in this study is defined as per UNDRR terminology, which is a function of hazard – the probability and severity of an event; exposure – assets subject to the hazard; and vulnerability – physical, social and economic susceptibility of assets to suffer damage under hazard of given severity. The planned infrastructure like HSR corridors are analysed on the urban vulnerability of loss of green space around the HSR stations. Further, frequency of emergency situations recorded in the system are also utilised as a comprehensive indicator of risk assessment as it combines all the factors of risk. Therefore, this study focuses on creating an enabling environment towards disaster risk informed investment on critical infrastructure and business continuity planning for safe rail operations. Keywords: Multi-hazards, Vulnerability, Exposure, Green Space, Sustainability.

Absence of risk assessment studies incorporating actual local vulnerability of key safety affecting railway elements like bridges and

The classification of liquefaction susceptibility is done into five classes – very low, low, moderate, high and very high with very low value corresponding to $V_{S30} > 620$ m/s (Koks et al, 2019). Different scenarios of earthquake hazard events are considered (hazard map obtained from UNDRR and resolution calibrated at 1.2 Km) with liquefaction susceptibility (1.2 Km resolution map obtained from Koks et al, 2019). The bridges data for the Indian Railways is plotted as per their ORN rating Zone wise for physical vulnerability. Similarly, the labour wages and GSDP (at constant prices) across the regions in India level crossings is presented in under social and economic vulnerability respectively.

Ranking criteria and key equations utilized in the study:

	Ranking Criteria		$e^{-\theta_{min}}$	\mathbf{A} NDUL – NIK – KED
•	Earthquake Hazard:	Physical Vulnerability:	• Emergency Risk = $\left(\frac{e-e_{min}}{e_{min}}\right)$	$ NDVI = \frac{NIR - RED}{NIR + RED} $
-	$PGA \le 50 \text{ cm/s}^2 - 1 \text{ (Low)}$	Normalised Index (NI) <= 0.0133 – 1 (Low)	`e _{max} -e _{min} ´	
	50 < PGA <= 150 - 2 150 < PGA <= 250 - 3	0.0133 < NI <= 0.09 – 2 0.09 < NI <= 0.1909 – 3		
	150 < PGA <= 250 - 5 250 < PGA <= 450 - 4	0.1909 < NI <= 0.1909 - 3 0.1909 < NI <= 0.3909 - 4		where, NIR = spectral reflectance in near-infrared
	< PGA – 5 (Extreme)	0.3909 < NI – 5 (Extreme)		
	Floods Hazard:	Economic Vulnerability:	where, e = average annual frequency of accidents/emergency situations recorded	spectrum,
				RED = spectral reflectance in red (visible)
	Inundation depth (ID) <= $180 \text{ cm} - 1 \text{ (Low)}$	GSDP <= 19300 (10 millions) – 5 (Low)		Spectral reflectance in red (visible)
	180 < ID <= 360 - 2 360 < ID <= 540 - 3	19300 < GSDP <= 112755 – 4 112755 < GSDP <= 382218 – 3		spectrum
	540 < ID <= 720 - 4	382218 < GSDP <= 621301 - 2		1
	720 < ID – 5 (Extreme)	621301 < GSDP – 1 (Extreme)	$m D = \frac{1}{1} - \frac{1}{2} $	NDVI is assumed constant seasonally as well as during
	Landslide Hazard (triggered by precipitations):	Social Vulnerability (checked in the order):	in Railway Board/Zonal Railways	study period. The NDVI values are assumed representativ
	Hazard Index – 1 (Low) to	> 50% Divisions of region A – 5 (Extreme)		
	Hazard Index – 5 (Extreme)	> 50% Divisions of region A+B – 4 > 50% Divisions of region B – 3	<i>e_{min}</i> = minimum average annual frequency	vegetation fraction and the values of NDVI varies betw
	Liquefaction Susceptibility:	> 50% Divisions of region B+C – 2		-1 to +1. The value of NDVI for threshold of vegetation
	Hazard Index – 1 (Low) to	> 50% Divisions of region C – 1 (Low)	e_{max} = maximum average annual frequency	

$$NDVI = \frac{NIR - RED}{NIR + RED}$$

spectrum spectral reflectance in red (visible) spectrum constant seasonally as well as during the NDVI values are assumed representative of and the values of NDVI varies between ue of NDVI for threshold of vegetation is assumed as 0.2 (Wong et al, 2019; Sobrino et al, 2004).

The zone of NR has highest risk while zone of NWR is amongst lowest risk. Fig 6. Green space availability in TOD zones of MAHSR stations

There is decline in MAHSR stationcities from 2001 in green space for critical TOD zone of 5 Km in 2019. Need for integrated urban and

transport planning.

critical

in

Conclusion Consideration of vulnerability local is understanding nature of risk.

This study is good enough as first step in spatial risk assessment and risk informed decision making towards investment for improvement of critical infrastructure.

• Risk analysis under environmental vulnerability scenario

References:

1) Koks et al, 2019. "A global multi-hazard risk analysis of road and railway infrastructure assets". In: nature communications. UNDRR Global Risk Data Platform. https://www.preventionweb.net/english/professional/maps/. Accessed on 14 October, 2020. 3) Wong et al., 2019. "High-resolution calculation of the urban vegetation fraction in the Pearl River Delta from the Sentinel-2 NDVI for urban climate model parameterization". In: Geosci. Lett. (2019) 6:2. 4) Sobrino JA, Jimenez-Munoz JC, Paolini L,2004. "Land surface temperature retrieval from LANDSAT TM 5". In: Remote Sens Environ 90(4):434-440

