Spatiotemporal analysis of deforestation in the Chapare region of Bolivia using LANDSAT images

Hasi Bagan1,2 | Andrew Millington3 | Wataru Takeuchi4 | Yoshiki Yamagata2

Abstract
The purpose of this study is to quantify (a) spatiotemporal deforestation patterns, and (b) the relationships between changes in the main land-cover types in the Chapare region of Bolivia. We applied subspace classification methods to LANDSAT data from 1986, 1999, and 2018 and used grid cells at scales of 150, 300, 600, and 900 m to measure deforestation trajectories. The 150 m grids provided better detail to determine deforestation trajectories than coarser-scale grid cells. Differences in grid-cell scale did not influence the statistical trends in land-cover changes significantly. Changes in forest area were negatively correlated with changes in cropland \((r = -0.44)\), grassland \((r = -0.34)\), swamp grassland \((r = -0.38)\), and regrowth \((r = -0.32)\) areas. Correlations between forest losses in cropland, grassland, and regrowth change analyses were weaker between 1999 and 2018 compared to 1986 to 1999. Forest cover declined from 6,635 km² (1986) to 3,800 km² (2018), and the deforestation rate increased from an annual average of 1.36% between 1986 and 1999 to 2.0% between 1999 and 2018. The key proximate drivers of forest clearance rates and patterns were increasing population, agricultural expansion, and road building. While coca is an economically important crop in Chapare, its direct and indirect effects on deforestation could not be determined unambiguously. It is probable that the expansion of agriculture will lead to further deforestation and forest fragmentation and, along with decreases in forest cover, further changes will take place between non-forest categories.

KEYWORDS
Amazon Basin, Chapare, coca cultivation, deforestation, grid-cell analysis, LANDSAT, spatiotemporal analysis

1 | INTRODUCTION
The forests of the Amazon Basin play important roles in carbon sequestration, biodiversity conservation, moisture recycling, and atmospheric circulation at local, regional, and global scales (Lima et al., 2014; Marengo et al., 2018; Ometto, Aguiar, & Martinelli, 2011; Tejada et al., 2016). Consequently, accurate accounting of changes in forest cover are essential for understanding and mitigating the impacts of climate change, and are a key requirement for managing ecosystem services (Bovolo & Donoghue, 2017; Grinand et al., 2013).

This research focuses on the southwestern Amazon Basin, specifically the Chapare region in the lowlands of Cochabamba Department in Bolivia. Historically, terrestrial vegetation in Chapare was dominated by humid tropical forests which exhibited ecological variation due to topographic and hydrologic conditions (Godoy, Morduch, & Bravo, 1998; Paneque-Gálvez et al., 2018). It was very lightly used by nomadic Amerindian tribal groups (Rodríguez Ostria, 1972) prior to being transformed by farmers who began to migrate to the region in the early 20th Century.

From the late 1950s and early 1960s migration rates increased as the Bolivian Government actively promoted colonization in Chapare...
by establishing permanent settlements, providing farm plots with legal tenure, and building roads to attract migrants from elsewhere in the country (Bradley & Millington, 2008a; Godoy et al., 1998; Henkel, 1995; Millington, 2018; Millington, Velez-Liendo, & Bradley, 2003; Müller, Pacheco, & Montero, 2014; van Gils & Ugon, 2006). Little original forest now remains due to clearance which has created a fine-grained mosaic of banana, citrus, palm, and rubber plantations; pineapple, manioc, rice, and coca fields; pastures; and secondary forest regrowth (Delgado, 2017).

This land-use mosaic is the result of complex interactions between deforestation drivers such as selective logging for timber; forest clearance for coca cultivation, and crops that have been promoted as alternatives to coca; cattle rearing; and infrastructure development. Settlement in the late 1950s and 1960s led to an expansion of agriculture in central Chapare (Millington, 2018). The increase in coca cultivation, associated with the global increase in cocaine use in the 1970s (Delgado, 2017), stimulated further forest clearance (Killeen et al., 2008) as farmers began to clear old-growth forests in southeastern Chapare (Millington et al., 2003; Dávalos et al., 2011).

Bolivia has alternated between being the second- or third-highest coca-producing country globally since the 1970s. Illicit coca cultivation in Bolivia is defined in law by the Bolivian Government. Most illicit coca is grown in Chapare and a very large proportion ends up in the cocaine trade (UNODC, 2019). These facts underpin the need to acknowledge the role of coca in understanding deforestation in Chapare. It also makes it different to most other deforested areas in the Amazon Basin, with the exception of a few lowland coca-producing areas in Colombia and Peru.

The role of coca in deforestation is confounded by the fact that, unlike most other crops, it is a high-yielding cash crop that requires low inputs (Grimmelmann, Espinoza, Arnold, & Arning, 2017; Henkel, 1995) and relatively little land (Bradley & Millington, 2008a; Kaimowitz, 1997). Therefore, the direct effects of clearing forest to create coca fields on deforestation rates is probably much less than the larger indirect impact on forest clearance (Hoffmann, Márquez, & Krueger, 2018). Grisaffi and Ledebur (2016) argue that attempts to control coca through eradication and planting alternative crops have accentuated the diversity of the cropland, plantation, forest clearance, and regrowth mosaic that characterizes the Chapare.

Issues associated with coca and land use are confounded by the scarcity of accurate statistics on coca cultivation prior to the establishment of the United Nations Office for Drug Control (UNODC) coca monitoring system for Bolivia in 2004; which has subsequently produced annual reports (see UNODC, 2019, for latest report). According to Henkel (1995) coca cultivation increased from approximately 15,000 to 61,000 ha between 1978 and 1990, while Millington (2018) shows that coca leaf production in Chapare increased from 11,800 to 36,000 t between 1974 and 1990.

How the direct and indirect effects of all of these drivers have played out across Chapare is unclear and there is a pressing need for spatiotemporal quantitative analysis of forest loss; not least so that effective biodiversity conservation strategies, ecosystem preservation, and rural development activities can be designed and implemented (Paneque-Gálvez et al., 2013).

Understanding the potentially scale-dependent, spatiotemporal variability in deforestation in Chapare is a further challenge. Many studies have sought to identify the spatial and temporal dynamics of forest-cover change in the Amazon (Bottazzi & Dao, 2013; Hansen et al., 2013; Malingreau, Eva, & De Miranda, 2012; Pinto-Ledezma & Mamani, 2014; Tyukavina et al., 2017). However, a lack of relevant multitemporal, land-cover maps has limited these efforts because many land-cover datasets are only available from 2000 or have relatively low spatial resolutions. Both longer time frames and fine-spatial resolution data are necessary to capture environmental and socioeconomic variability at fine-spatial resolutions when analyzing land-cover change.

Consequently, the focus of this study is on the use of Landsat data and GIS techniques to quantify spatiotemporal patterns of forest-cover change in Chapare from 1986 to 2018. We used subspace classification to accurately classify land cover using Landsat images acquired in 1986, 1999, and 2018. It is difficult to (a) visualize spatiotemporal patterns of forest change, and (b) quantify relationships between land-cover classes from the pixel-based transition matrices generated by many image classification algorithms. The overcome this a grid-cell methodology was used as an alternative way to investigate relationships between changes in land-cover classes. Therefore, its application has direct relevance to improving our understanding of the relationships between the growing demand for agricultural land and future deforestation trends, and in understanding direct and indirect drivers of deforestation.

2 | MATERIALS

2.1 | Study area

The Chapare region we report on covers approximately 9,500 km². It is located in the southwestern Amazon Basin and is centered on 16.50°S, 65.00°W (Figure 1a; Grisaffi & Ledebur, 2016). Chapare, as used in this article, refers to the study area and not the Bolivian administrative unit called Chapare Province. It is based on one of the main areas in Bolivia surveyed annually by the UNODC to monitor coca cultivation. Adjustments to the UNODC area reflect our understanding of the ecology and colonization of the area from fieldwork conducted since 1998. The term Chapare has routinely been used in the scientific literature to refer to this area (Bradley & Millington, 2008a; Farthing & Kohl, 2010; Grisaffi & Ledebur, 2016; Henkel, 1995; Killeen et al., 2007; Millington, 2018 and references therein). We have adopted this usage in this article, while acknowledging the confusion that arises if it is not defined. The area reported on therefore includes the lowland parts of Carrasco, Chapare, Ichilo, and Tiraque Provinces of Cochabamba Department (http://data.humdatat.org/dataset/bolivia-administrative-level-0-3-boundary-polygons): the highland parts of which are not relevant to this research. Consequently, our
research findings apply to the lowlands of all four of these provinces.

The area is located adjacent to the Andes. Large rivers that drain the Andes to the south traverse the region before joining the Mamoré River, a major tributary of the Amazon River. The area forms an eco-
tone extending from the forested foothills of the Andes in the south to swamps and seasonally flooded grasslands and forests in the north. The lowland areas adjacent to the foothills are not subject to regular seasonal flooding as they comprise alluvial fans which reach eleva-
tions of around 300 m.a.s.l.. Mean annual rainfall ranges from 2,500 to 7,000 mm, with most falling between October and March (Killeen et al., 2007; Montes de Oca, 1997).

2.2 Satellite imagery and field verification data

Free, open-access LANDSAT imagery are highly suited to the detec-
tion of land-cover change (Wulder et al., 2019) in agricultural regions (Yin et al., 2018), urban areas (Awotwi, Anornu, Quaye-Ballard, & Annor, 2018), grasslands (Batunacun, Hu, & & Lakes, 2018), and when analyzing forest-cover dynamics (Achard et al., 2014; Hansen et al., 2013; Keenan et al., 2015; Lu, Batistella, Mausel, & Moran, 2007). Moreover, LANDSAT images are ideal for identifying and characterizing the spatial and temporal relationships between forest-cover change and other anthropogenic land-cover changes (Bagan & Yamagata, 2014; Duveiller, Defourny, Desclée, & Mayaux, 2008). We acquired LANDSAT Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+), and Operational Land Imager (OLI) Level-1TP data for the study area for 1986, 1999, and 2018 from the US Geological Survey (Table 1). These years were selected for the following reasons:

1. 1986 was the year with the earliest available cloud-free TM imag-
ery during the 1970s-1980s ‘coca boom’;

2. in 1999 the area planted to coca was very low after successful eradication programs during the 1990s; and

3. coca cultivation began to increase again with the growing influence of the MAS (Movement to Socialism) Party and the election of Morales-led governments from 2005 to 2019. Therefore, 2018 reflects 18 years of pro-coca policies that were integral to broader land, agrarian, and social reforms in Bolivia (Farthing & Kohl, 2010; Grisaffi & Ledebur, 2016; Kohl & Breshahan, 2010; Morales, 2013).

Cloud-free images were acquired between July and October (the dry season), when differences in rates of photosynthesis between different land-cover types are at a maximum in the region. They were preprocessed for standard terrain corrections by the US Geological Survey. All analyses were based on the optical and thermal infrared bands of the LANDSAT TM, ETM+, and OLI images: panchromatic bands were not used. We did not perform the atmospheric correction process in this study, but the atmospheric correction could be an improvement (Song, Woodcock, Seto, Lenney, & Macomber, 2001). It is worth noting that previous studies have shown that using multi-
date image segmentation for classification can improve the robustness of land-cover change analysis. It helps to reduce the error caused by using land-cover images independently classified from separate remote sensing images, and can reduce the problem of error.

TABLE 1 Acquisition dates for the LANDSAT imagery used

<table>
<thead>
<tr>
<th>Satellite-sensor</th>
<th>Acquisition date</th>
<th>Path/row</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANDSAT 5 TM</td>
<td>October 4, 1986</td>
<td>232/072</td>
</tr>
<tr>
<td>LANDSAT 7 ETM+</td>
<td>July 12, 1999</td>
<td>232/072</td>
</tr>
<tr>
<td>LANDSAT 8 OLI</td>
<td>September 10, 2018</td>
<td>232/072</td>
</tr>
</tbody>
</table>

Abbreviations: ETM+, Enhanced Thematic Mapper Plus; OLI, Operational Land Imager; TM, Thematic Mapper.
propagation when using classified images to estimate land-cover change trajectories (Duveiller et al., 2008; Hussain, Chen, Cheng, Wei, & Stanley, 2013).

We conducted field campaigns in Chapare in August 2003 and 2007, and September 2015. A total of 450 land-use/land-cover recording sites were established along 12 transects (Figure 1a). Recording sites were established in 2003 in central and eastern Chapare, and sites in western Chapare were added in 2007. When the sites were first established we aimed for approximately equal numbers of primary forest; low, medium and high secondary regrowth; swamp forest and grassland; field crops; tree crop plantations; grassland/pasture; bare soil; urban fabric and road-land parcels. Once a relatively large area of a particular land cover was located, a sketch map of the site with all the land parcels within approximately 250 m in all directions from a recording point was drawn. A GPS reading was made at the recording point. Subsequent land-use changes in the region have led to changes in the proportions of each land-cover class at the 450 sites. In addition, the number of land-cover parcels has changed, mainly due to conversion of natural vegetation to small fields, and the merging and splitting of fields. In the 2015 survey, records were

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Description of land-cover types and the number of training and validation samples for images acquired in 1986, 1999, and 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class name</td>
<td>Class description</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>C1. Water</td>
<td>Permanent water bodies, rivers, lakes, and ponds</td>
</tr>
<tr>
<td>C2. Dense swamp grassland</td>
<td>Dense swamp grass, >80% cover</td>
</tr>
<tr>
<td>C3. Sparse swamp grassland</td>
<td>Low-density swamp grass, with open expanses of bare ground and standing water</td>
</tr>
<tr>
<td>C4. Bare ground</td>
<td>Covered by sand and/or gravel in dry and wet seasons</td>
</tr>
<tr>
<td>C5. Forest in shadow</td>
<td>Lower montane forest in shadow, mainly in the Andes foothills comprising mature trees forming a dense and structurally complex canopy with few gaps</td>
</tr>
<tr>
<td>C6. Forest, illuminated</td>
<td>Illuminated lower montane, mainly in the Andes foothills comprising mature trees forming a dense and structurally complex canopy with few gaps</td>
</tr>
<tr>
<td>C7. Dense lowland forest</td>
<td>Forested areas with low levels of disturbance that consist of mature trees forming a dense and structurally complex canopy with few gaps. It is probable that some mature secondary forest occurs in the class</td>
</tr>
<tr>
<td>C8. Lowland swamp forest</td>
<td>Flooded forests with varying degrees of disturbance due to natural dynamics (e.g., flooding regimes)</td>
</tr>
<tr>
<td>C9. Cropland</td>
<td>All agricultural fields and plantations with crops.</td>
</tr>
<tr>
<td>C10. Regrowth</td>
<td>Early to medium stages of forest regeneration, identified by shrub and tree height and indicator plants</td>
</tr>
<tr>
<td>C11. Sparse grassland</td>
<td>Cleared fields and well-grazed pastures</td>
</tr>
<tr>
<td>C12. Dense grassland</td>
<td>Areas dominated by dense grassland (>80% cover), often with shrub regrowth, indicating abandoned fields and pastures</td>
</tr>
<tr>
<td>C13. Medium-density grassland</td>
<td>Areas dominated by medium-density grassland (50–80% cover), occasionally with shrubs. Normally indicative of pastures with lower grazing density</td>
</tr>
<tr>
<td>C14. Urban/built-up</td>
<td>All residential, commercial and industrial areas, including transport infrastructure</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
obtained for approximately 2,200 land parcels at the 450 sites. In addition to recording the land cover for each land parcel within the vicinity of a recording site, we also noted geomorphological, pedological and hydrological information; and took ground photographs.

We tied these sites to the image data with the field GPS readings (Figure 1b). For the research reported in this article land-cover information acquired during the field campaigns was converted into 14 land-cover classes, based on field notes and the visual interpretation of high-spatial resolution images from WorldView-2 and -3, and from Google Earth and LANDSAT composites (Table 2). Then, we generated ground reference samples to assess the accuracy of the image classification. These reference samples were split into two sets of samples to generate sets of training sites units and validation sample units that were spatially separate. Each sample unit contained at least nine pixels (Congalton & Green, 2008).

3 METHODS

3.1 Subspace classification

Subspace methods (Oja, 1983) provide a practical solution for pattern recognition in image sets (Fukui & Maki, 2015; Park & Konishi, 2019) and have been applied to remote sensing data by Bagan and Yamagata (2012). Recent studies indicate that no single classification method can fulfill all classification requirements (Abdi, 2019; Kiang, 2003). Subspace methods provide an alternative to supervised classification approaches (Bagan, Kinoshita, & Yamagata, 2012). Subspace classification was applied to each of the three datasets used in this research (Table 1). This enables us to report on the first application of subspace classification methods to a complex mosaic of humid tropical forest, cropland, pasture, and secondary regrowth. Such landscapes have proven a challenge to land-change scientists using relatively small-spatial resolution, remotely sensed data acquired from the LANDSAT series of satellites and sensors in the past.

Subspace methods transform the original data from high-dimensional to low-dimensional feature space, while preserving the discriminative properties of the different classes. This significantly reduces computational cost and leads to more feasible subspaces. Figure 2 illustrates the concept of subspace method classification.

To improve the performance and training stability of the subspace method, normalization processing is used to rescale the pixel values to the 0–1 range. In this research the image data, and training and validation pixels, were normalized as follows during pre-processing. Let \(d \) be the number of image bands. For a given pixel \(x = (x_1, x_2, ..., x_d)^T \) that \(x \) is a column vector, the normalized pixel is computed as:

\[
x = (x_1/L, x_2/L, ..., x_d/L)^T
\]

where \(L = \sqrt{x_1^2 + x_2^2 + \ldots + x_d^2} \) and the superscript \(T \) denotes the matrix transpose operator. Let \(x \) denote the normalized pixel for convenience.

We denote the subspace of \(k \)th land-cover class by \(C_k \), and using \(\phi_{ij} \) \((1 \leq i \leq r, 1 \leq k \leq K)\) to denote the \(i \)th basis vector in the \(k \)th land-cover class, which is computed from the class-training sample data covariance matrix by eigenvalue- and eigenvector-solving algorithms. Here \(r \) is the dimensionality of the subspace \(C_k \), and \(K \) denotes the number of land-cover classes.

Let column vectors \(s_{ik} \) \((1 \leq i \leq N_k)\) be a set of training samples of \(k \)th land-cover class, where \(N_k \) is the number of training samples belonging to \(k \)th land-cover class. Then we form a matrix \(S_k = [s_{1k}, \ldots, s_{N_kk}] \). Subsequently the covariance matrix of the subspace \(C_k \) can be evaluated as:

\[
\text{Cov}_k = \frac{1}{N_k - 1} S_k S_k^T
\]

This is a multiplication of a \(d \times N_k \) matrix, \(S_k \), by a \(N_k \times d \) matrix \(S_k^T \), which results in a \(d \times d \) matrix. Then we calculate the eigenvalues of \(\text{Cov}_k \) and select the \(r \) eigenvectors \(\phi_{ij} \) \((1 \leq i \leq r, 1 \leq k \leq K)\) corresponding to the first \(r \) largest eigenvalues (in decreasing order). These \(r \) eigenvectors are used as basis vectors to form the subspace \(C_k \).

The basic class-featuring information compression (CLAFIC) subspace method measures the similarity between the pixel \(x \) and the \(k \)th class by using the projection norm onto the subspace \(C_k \).

\[
S_k(x) = S(x, C_k) = \sum_{i=1}^{r} (X^T \phi_{ik})^2
\]

FIGURE 2 Schematic diagram of the subspace training and classification process
Consequently, the pixel x is classified into that class whose squared projection length $S_i(x)$ is maximum. To reduce misclassification in the overlapping regions of two or more class subspaces, the CLAFIC method has been modified to the averaged learning subspace method (ALSM), which adopts the iteration process and adaptively computes the subspaces to reduce classification error. In ALSM, the following solutions are used to update the class covariance matrix so that the overlap between subspaces is reduced.

At iteration t ($t > 0$), the conditional covariance matrix is calculated based on the misclassified training pixels as

$$ Cov^{(t)}_{pq} = \sum_x \{ xx^T \mid x \in C_p, x \rightarrow C_q \}, p \neq q. \tag{4} $$

where the symbol "\rightarrow" denotes that the training pixel x belonging to p^{th} land-cover class ($1 \leq p \leq K$) has been mislabeled into q^{th} land-cover class ($1 \leq q \leq K$).

Then, we updated the covariance matrix, which we denote by $Cov^{(t)}_{pq}$, for p^{th} class as:

$$ Cov^{(t)}_{p} = Cov^{(t-1)}_{p} + \alpha \sum_{q=1, q \neq p}^{K} Cov^{(t-1)}_{pq} - \beta \sum_{q=1, q \neq p}^{K} Cov^{(t)}_{qp} \tag{5} $$

where α and β are small positive constant values, and set the initial conditional covariance matrix to $Cov^{(0)}_{pq} = Cov_{pq}$. The eigenvalues and eigenvectors of $Cov^{(t)}_{p}$ are then calculated to generate a new subspace C_p. Repeat the iterative process until the preset maximum number of iterations is reached or the required recognition rate is reached (Bagan & Yamagata, 2010). In this study, the subspace dimensions were fixed at four for each of the images used.

3.2 | Grid-cell processing

Grid-cell processing was used in this study to investigate whether the patterns of forest clearance and correlations between changes in land-cover classes were scale dependent. The grid-cell approach represents a good compromise between necessary detail and computational feasibility (Bagan & Yamagata, 2012; Shoman, Alganci, & Demirel, 2019). For unbiased spatiotemporal analysis and to find particular spatial characteristics related to deforestation and forest fragmentation between two dates, we created nets of grid cells at scales of 150 \times 150 m, 300 \times 300 m, 600 \times 600 m, and 900 \times 900 m covering the entire study area. We used these different grid-cell scales to investigate any scale dependency in the relationships between changes in forest area and changes in other land-cover classes. Another important advantage of grid cells with unique cell identifiers is that they enable land-cover maps to be linked unambiguously when analyzing land-cover change. We explain the procedures for merging land-cover classes, and for linking grid cells and land-cover classes below.

First, we merged similar land-cover categories (Table 2) into single classes for analysis: dense and sparse swamp grassland were merged into the swamp grassland class; forest in shadow, forest (illuminated), dense lowland forest, and lowland swamp forest were merged into the forest class; and dense, medium-density, and sparse grassland were merged into the grassland class. After merging the target classes, the merged land-cover maps for 1986, 1999, and 2018 had eight land-cover types: water, swamp grassland, bare ground, forest, cropland, regrowth, grassland, and urban/built-up.

Next, we used the intersection of the 150 m grid cells with the eight-class land-cover maps to calculate the area of each land-cover class in each grid-cell, and transferred the results to new attribute fields using ArcGIS 10.6 software. Finally, we divided the area of each land-cover class by the area of the grid-cell to calculate the percentages of each grid-cell occupied by each class. We repeated the process for grid cells at 300 m, 600 m, and 900 m scales, and transferred the results, expressed as percentages of the grid-cell occupied by each class, to new attribute fields.

3.3 | Deforestation rate

We also calculated the annual standardized deforestation rate (ρ) using percentage of forest cover area (Puyravaud, 2003):

$$ \rho = 100 \times \frac{1}{t_2 - t_1} \ln \left(\frac{A_2}{A_1} \right), \tag{6} $$

where ρ is the annual rate of deforestation (as a percentage), and A_1 and A_2 are the forest-cover areas in years t_1 and t_2, respectively.

4 | RESULTS

4.1 | Spatiotemporal changes of the land-cover classes

The accuracies of the subspace classifications obtained for each image were evaluated in terms of producer’s accuracy and overall accuracy (Congalton & Green, 2008). The overall accuracies ranged between 75.5 and 78.4% for the 14 land-cover categories (Figure S1). After creating the eight merged land-cover classes, the classification accuracies for the swamp grassland, forest, and grassland classes improved in that they exhibited less variability and were generally close to the highest accuracies of the individual classes that had been merged (Figure 3).

We prepared land-cover classification maps for 1986, 1999, and 2018 (Figure 4a) using the merged classes and calculated the percentage of area occupied by each class after merging (Figure 4b). The total area of agricultural land uses (grassland and cropland) increased from 7.6% of the study area in 1986 to 18.3% (1999) and 20.6% (2018), while the forest area decreased from 69.8% in 1986 to 40.0% in 2018, with an intermediate value of 58.5% in 1999 (Table 3).

FIGURE 4 (a) Land-cover classification maps for 1986, 1999, and 2018 after merging land-cover categories (see Section 3.2 in text); (b) The percentages of the study area covered by each land-cover class in 1986, 1999, and 2018 [Colour figure can be viewed at wileyonlinelibrary.com]
The development of the pattern of urban/built-up and bare ground over time in Figure 4 are consistent with the typical fishbone pattern of road network and agricultural settlement growth which is known to lead to forest fragmentation in the Amazon Basin. In the Chapare region, small agricultural fields have been cleared adjacent to feeder roads as they penetrated further into the remaining forest between 1986 and 2018. The last 19 years have witnessed an acceleration in the trend of constructing roads in previously unutilized forests, with pastureland and cropland replacing forests. Figure 4 shows that cropland and grassland areas have expanded rapidly in this period. This has been accompanied by a marked decrease in forest area over the period 1986–2018 indicating an increase in the overall forest clearance rate, which in turn is related to the relatively low increase in regrowth between 1986 and 1999, compared to the period after 1999.

Analysis of land-cover change trajectories

We calculated forest density at 150-m scale grid-cell for 1986, 1999, and 2018 (Figure 5).

To reveal spatiotemporal changes in forest density, we calculated the percentage changes in forest cover at the 150 m scale for 1986–1999 and 1999–2018 (Figure S2). The value for each grid-cell for each time interval was calculated by subtracting the forest area in 1986 from that in 1999, and then 1999 from 2018. We then divided the changes in forest area by the cell area. There has been a trend of forest clearance across the entire study area from the early nucleus of settlements in central Chapare between 1986 and 2018. From 1986 to 1999 deforestation mainly occurred in southeastern and central Chapare, but after 1999 clearance had expanded to cover almost the entire study area (Figure S2).
The annual standardized deforestation rates ρ were 1.36% for 1986–1999 and 2.0% for 1999–2018: forest was lost more slowly between 1986 and 1999 than between 1999 and 2018. Using the data in Table 3 we calculated the total amounts of forest cleared over the past three decades: 1075 km2 of forest was cleared between 1986 and 1999 and a further 1,760 km2 from 1999 to 2018. Most of the forest cleared in both time intervals was replaced by either grassland (mainly pasture for cattle grazing) or cropland.

We also calculated correlation coefficients between the land-cover changes for the two intervals (Table S1). These revealed that forest loss was negatively correlated with increases in swamp grassland ($r = -0.36$), cropland (-0.33), regrowth (-0.43), and grassland (-0.46) between 1986 and 1999.

We calculated changes in the spatial distribution of the percentage of forest cover for each grid-cell between 1986 and 2018 at the 150, 300, 600, and 900 m scales (Figure 6). The calculation for each grid-square cell value was described above (Section 3.2).

We extracted a subset in the west of the study area (Figure 1a, blue rectangle) to visualize the differences in the spatial patterns of land cover, forest density, and deforestation at the 150, 300, 600, and 900 m scales more clearly (Figure 7).

The number of fields between feeder roads dramatically increased as more forest was cleared for cultivation and grazing between 1986 and 2018, even though the road network did not alter much (Figure 7a,b). Figure 7c shows that forest clearance increased rapidly between 1999 and 2018. By comparing percentage changes in forest cover at 150, 300, 600, and 900 m grid scales for 1986–2018 (Figure 7c,d), it is clear that the 150 m grid extracted useful information about forest clearance more clearly than coarser-scale grid cells.

We summarize the land-cover change correlations between 1986 and 2018 at the 150, 300, 600, and 900 m scales in Table S2. The changes in forest area are strongly negatively correlated with changes in cropland, regrowth, swamp grassland, and grassland at all four grid scales.

Although the correlation coefficients between the land-cover categories at all four-grid scales are similar (Table S2), 150-m grid cells extract deforestation structures more clearly than grid-cell scales of 300, 600, and 900 m (Figure 6). This, and the fact that the finer grid-cell scale revealed more spatial detail about deforestation, allows us to limit the discussion in the next section to the results obtained when using 150 m scale grids.

Finally, we prepared representative 2D density plots of changes in land-cover categories at the 900 m grid-cell scale between 1986

FIGURE 6 Comparison of the spatial distribution of the percent change in forest cover at 150, 300, 600, and 900 m grid scales from 1986 to 2018 [Colour figure can be viewed at wileyonlinelibrary.com]
FIGURE 7 (a) Comparison of the land-cover maps for 1986, 1999, and 2018; (b) Forest percentage at 150 m grid scales; (c) Percentage change in forest cover for 1986–1999, 1999–2018, and 1986–2018 at 150 m grid scales; (d) Percentage change in forest cover at 300, 600, and 900 m grid scales for 1986–2018. The area in each of these images is indicated by the blue rectangle in Figure 1a [Colour figure can be viewed at wileyonlinelibrary.com]
and 2018 (Figure 8). These confirm that large areas of forest have been converted to cropland, grassland, and regrowth during the last three decades.

Grid cell-based land-cover change trajectories analysis enabled land-cover maps to be linked unambiguously and therefore provided reliable information on land-cover change for the same areas. This is an improvement in comparisons made between pixel-based comparisons, and provides a high level of confidence in the results.

5 | DISCUSSION

The discussion focuses initially on broad trends in land-cover change in the Chapare region, before analyzing the land-cover changes that have taken place through inferences drawn from spatial patterns and quantitative analyses. Given that Chapare is a globally important coca source region, the ability to determine the direct and indirect effects of coca cultivation on deforestation from this research is analyzed. Finally, key environmental and methodological issues used are discussed.

In terms of the main land-use conversion trajectories, change detection analysis revealed that 435.9 and 363.1 km² of forest were converted to grassland (pasture) and cropland between 1986 and 1999, respectively (Figure S2). While between 1999 and 2018, 397.2 and 352.0 km² of forest were converted to grassland and cropland. These trends are consistent with other research from the Amazon Basin where in-migration, settlement, and agricultural expansion are key deforestation drivers (De Sy et al., 2015; Grinand et al., 2013). The parallel trends of declining forest cover and increasing amounts of cropland and pasture are intuitive for an area that has been colonized by migrants who have been encouraged to develop an agricultural frontier by the Bolivian Government.

The forest losses must be considered ‘net’ losses because some cleared areas may have regenerated to the stage of mature secondary forest in the two time frames considered, though our knowledge of the area suggests that these areas will be a relatively small. Both the net forest losses and the broad land-use changes mask the fact that forest has been replaced by a fine-grained mosaic of many different crops, pasture, and regrowth of various ages across Chapare in the last 32 years. This multiplicity of land-uses has resulted from
economic decisions made by individual farmers in response to various agricultural policies which have changed significantly over the time frame of the research. The fine grain of the resulting landscape is created by farmers being given long, narrow areas to farm, and the fact that these areas are then divided into many fields over time (Bradley & Millington, 2008a; Bradley & Millington, 2008b). From the remote sensing point-of-view large tracts of terrestrial or swamp forest, which are relatively spectrally homogenous at the spatial resolutions of LANDSAT series sensors, have been replaced a far more spectrally heterogeneous landscape.

While the rates of forest conversion were rather higher after 1999; the rates of increase in the cropland and grassland were similar before and after 1999 (Table 3). This suggests the loss of forest to cropland and grassland is not a straightforward process and requires further investigation. It was not possible to validate these apparently constant increases in cropland and pasture areas over the 1986–2018 time frame for Chapare with an independent data set, as the highly detailed third national agricultural census in 2013 (Estado Plurinacional de Bolivia, 2015) cannot be compared to the much less detailed 1984 agricultural census with any clarity.

As the increases in cropland and grassland (pasture) have followed similar trajectories since 1986, the cropland–pasture mix must have remained more-or-less the same across the region. This also means that cropland–pasture mix in central and southeastern Chapare that existed before 1999 has been replicated as the remaining forest in central and southeastern Chapare has been cleared; and as the main thrust of settlement and clearance shifted north-westwards after 1999. Interestingly this has occurred despite environmental differences, particularly soil properties and hydrological conditions, that exist across the area.

As intimated earlier, it is not possible to discuss forest conversion in Chapare without considering the role of coca. Given the fact that the cropland–pasture mix has remained more-or-less the same since 1986, it might be concluded that coca has had little influence on forest conversion. However, as the amounts of coca grown have varied significantly over the 32 years studied (UNODC, 2019), and UNODC reports from 2005 to 2018), as has the effectiveness of such an integrated driver into the land-use/land-cover change literature. The evidence presented in Figure 7 signals the important role of road building in fragmenting forests that has been noted by other researchers (Davidson et al., 2012; Dissanayake et al., 2019). We can infer from this that the fishbone forest clearance pattern (Figure S3), which has been observed frequently in the Amazon Basin (de Filho & Metzger, 2006; Ewers & Laurance, 2006) is present. This was noted earlier in central and southeastern Chapare (Millington et al., 2003) and analyzed in the lowlands of Carrasco Province (southeast Chapare) by van Gils and Loza Armand Ugon (2006). Applying Bradley and Millington’s (2008b) theoretical model of forest fragmentation to the spatial patterns of forest fragmentation shown in this article, confirms that the fishbone pattern arises from a combination of road building and government land grants along the roads throughout Chapare. We argue that an integrated road-land grant driver of deforestation should be considered in areas like Chapare where there has been very little spontaneous colonization of forested areas in the time frame of this research. The introduction of such an integrated driver into the land-use/land-cover change literature would provide a mechanism to support Fernández-Llamazares et al.’s (2018) finding that the extension of road networks increases deforestation rates.
The percentages of cropland and grassland in Chapare increased by factors of 2.6 and 2.8 between 1986 and 2018, respectively (Table 3 and Figure 4b). While metrics like these provide headline figures, caution should be exercised in applying them across large areas. In the case of Chapare the increases in the proportions of cropland and grassland to 1999 can only be applied to central and southeastern Chapare with any certainty. While after 1999, they can be applied more broadly to the region. However, even after 1999 an issue arises because the forest clearance, cultivation, and pastoral, frontiers were mainly in northwestern and the remoter parts of central and southeastern Chapare. It is worthwhile noting that the deforestation rates and net forest losses obtained from this study are higher than the average deforestation rate of 1% for Bolivia (Armenteras, María, Rodríguez, & Retana, 2017) and the country’s net loss of forest area (FAO, 2015).

The correlations between the changes in land-cover categories over the two time periods studied lend support to these arguments in that forest losses are negatively correlated with increases in cropland and grassland. Correlation coefficients of forest loss and increases in cropland were slightly weaker in 1999–2018 ($r = \text{-.27}$) compared to 1986–1999 ($r = \text{-33}$), while those between forest losses and grassland were much stronger for 1986–1999 ($r = -.46$) than for 1999–2018 ($r = -.21$; Table S1). However, the lower correlation coefficients of forest-cropland and forest-pasture conversion in the second time period do not readily lend support to the fact that the cropland-pasture balance has changed little since 1986. The relationships between cropland and regrowth, and grassland and regrowth, are potentially important in explaining this. Cropland-regrowth dynamics are of particular importance because many of the annual crops in the region are grown under a slash-and-burn systems—the intensity of which varies with population and cultivation densities; and the amount of alternative crops grown during periods when anti-narcotic policies were enforced, particularly in the 1990s. This also applies to some other crops which are grown for only a few years before fields are abandoned, for example, pineapples and heart of palm. Between 1986 and 1999, 26.0 km² of cropland reverted to regrowth, while from 1999 to 2018 this rose to 213.0 km², which may be due to more fields being left to fallow in central and southeastern Chapare before 1999 when there was a relatively large pool of primary forest. However, as more people have migrated to the Chapare, land has become scarcer (pers. comm. Susanna Arrazola, Centro de Biodiversidad y Genética, Universidad Mayor San Simon, Cochabamba). Land grants have become smaller and farmers cannot afford large proportions of their farms to remain as fallow regrowth. That, along with the more permanent cultivation patterns that now exist in central and southeastern Chapare, will have reduced the proportion of cultivable land that can be under fallow regrowth. It is worthwhile noting that the results from the quantitative analysis obtained using the grid-cell-based approach could not easily have been generated in pixel-based analysis. Although the results obtained at the finer grid-cell scale of 150 m revealed more spatial detail about deforestation, the relationship between grid-cell scale and quantitative analysis is unclear and requires further investigation.

In terms of environmental outcomes, the replacement of tropical forest with agriculture accentuates flooding and soil erosion (Souza-Filho et al., 2016). This will be the case in Chapare (Torrico, Pohlan, & Janssens, 2005) and will particularly affect the newer farming settlements that are already susceptible to seasonal flooding in the north of Chapare. Local microclimates have already been impacted by the replacement of forest with grasses, annual and perennial crops. In addition to this local effect, carbon emissions associated with the land-use changes and a reduction in carbon sequestration capacity, will have contributed to climate change globally (Marques et al., 2019). Land-cover change can also have additional biophysical effects, such as local temperature changes (Duveiller et al., 2020). The new agroecosystems created will also have impacted directly on biodiversity in the region. Therefore, routine application of the techniques outlined in this research is necessary if Bolivia is to manage the ecosystem services that Chapare provides.

The subspace method used classified the image data into several classes based on a set of class subspaces, which were generated from a set of training samples of each class using principal component analysis. One of the main stated advantages of subspace over other classification methods is that continual updating of the class covariance matrices reduces the overlap between class subspaces in the learning phase of the procedure. While this provided clarity for most classes, we noticed that discrimination between the urban/built-up and bare ground classes was still limited, as it was to a lesser extent for forest and regrowth. This is due to the similar spectral characteristics of the pairs of classes in both cases (Figure S1). These issues are potentially problematic in understanding land-use dynamics in the region because the bare ground class represents areas of soil which are being cultivated and highly degraded pasture, and needs to be differentiated from urban expansion and other changes to infrastructure. In the case of forest and regrowth created some of the issues around interpreting the role of regrowth in understanding forest-cropland dynamics. These problems are unlikely to be resolved with visible and shortwave infrared data, and future research should combine optical and synthetic aperture radar remote sensing data to improve the between discrimination of urban/built-up and bare ground classes, or extend the subspace method by adopting a nonlinear transformation defined by kernel functions (Park & Konishi, 2019).

6 | CONCLUSIONS

The 32 years from 1986 to 2018 witnessed an acceleration in the transformation of natural forests to a fine-grained mosaic of cultivation and grazing, secondary forest regrowth, forest remnants, and agricultural settlements in Chapare: a process began in the late 1950s and early 1960s.

Almost a third of the forest that remained in 1986 (2,835 ha) had been lost by 2018. Forest clearance has accelerated since 1986, with mean annual deforestation rates increasing from 1.36% (1986–1999) to 2.0% after 1999. In addition, the locus of deforestation has shifted from central and southeastern Chapare to the northwest. The
deforestation rates and net forest losses in Chapare are higher than the average deforestation rate, and the net loss of forest area, for Bolivia. The main drivers of tropical forest conversion in the region have been in-migration, settlement, and agricultural expansion. We suggest that government-led development of the road network, which is very closely tied to government land grants to farmers, should be combined into a road-land grant driver. However, we were unable to identify either direct or indirect effects of coca on forest loss in the region. The net outcome of all deforestation drivers in the area has been that natural forested landscapes have been replaced by a highly altered fine-grained anthropic landscape driven by an expanding agricultural frontiers.

This study is applicable to discussions about potential future anthropogenic land-cover changes in other tropical forest areas. It provides insights that may be useful for informing policy and land-use planning, and accounting for the spatial and temporal dynamics of land-change trajectories in trying to achieve development and conservation targets.

ACKNOWLEDGMENTS
H.B. was supported by NSFC Grant No. 41771372 and a Mawson Lakes Research Fellowship to conduct research at Flinders University. A.M. was supported by grants from the Texas Agricultural Experiment Station (Texas A&M University) and the Flinders University Outside Studies Program. The 2003 field campaign was supported by an EU Framework IV grant under the INCO program, and the UK National Environmental Research Council. We acknowledge field assistance provided by Andrew Bradley, Mauricio Galloliendo, Felix Huancar, Lucho Ramírez, and Daniel Redo.

CONFLICT OF INTEREST
None.

ORCID
Hasi Bagan https://orcid.org/0000-0002-0471-7135

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Bagan H, Millington A, Takeuchi W, Yamagata Y. Spatiotemporal analysis of deforestation in the Chapare region of Bolivia using LANDSAT images. *Land Degrad Dev.* 2020;1–16. https://doi.org/10.1002/ldr.3692