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Abstract

The purpose of this study is to quantify (a) spatiotemporal deforestation patterns, and

(b) the relationships between changes in the main land-cover types in the Chapare

region of Bolivia. We applied subspace classification methods to LANDSAT data from

1986, 1999, and 2018 and used grid cells at scales of 150, 300, 600, and 900 m to

measure deforestation trajectories. The 150 m grids provided better detail to deter-

mine deforestation trajectories than coarser-scale grid cells. Differences in grid-cell

scale did not influence the statistical trends in land-cover changes significantly.

Changes in forest area were negatively correlated with changes in cropland (r = −.44),

grassland (r = −.34), swamp grassland (r = −.38), and regrowth (r = −.32) areas. Correla-

tions between forest losses in cropland, grassland, and regrowth change analyses were

weaker between 1999 and 2018 compared to 1986 to 1999. Forest cover declined

from 6,635 km2 (1986) to 3,800 km2 (2018), and the deforestation rate increased from

an annual average of 1.36% between 1986 and 1999 to 2.0% between 1999 and

2018. The key proximate drivers of forest clearance rates and patterns were increasing

population, agricultural expansion, and road building. While coca is an economically

important crop in Chapare, its direct and indirect effects on deforestation could not be

determined unambiguously. It is probable that the expansion of agriculture will lead to

further deforestation and forest fragmentation and, along with decreases in forest

cover, further changes will take place between non-forest categories.
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1 | INTRODUCTION

The forests of the Amazon Basin play important roles in carbon

sequestration, biodiversity conservation, moisture recycling, and

atmospheric circulation at local, regional, and global scales (Lima

et al., 2014; Marengo et al., 2018; Ometto, Aguiar, &

Martinelli, 2011; Tejada et al., 2016). Consequently, accurate

accounting of changes in forest cover are essential for understand-

ing and mitigating the impacts of climate change, and are a key

requirement for managing ecosystem services (Bovolo &

Donoghue, 2017; Grinand et al., 2013).

This research focuses on the southwestern Amazon Basin, specifi-

cally the Chapare region in the lowlands of Cochabamba Department

in Bolivia. Historically, terrestrial vegetation in Chapare was domi-

nated by humid tropical forests which exhibited ecological variation

due to topographic and hydrologic conditions (Godoy, Morduch, &

Bravo, 1998; Paneque-Gálvez et al., 2018). It was very lightly used by

nomadic Amerindian tribal groups (Rodríguez Ostria, 1972) prior to

being transformed by farmers who began to migrate to the region in

the early 20th Century.

From the late 1950s and early 1960s migration rates increased as

the Bolivian Government actively promoted colonization in Chapare

Received: 31 July 2019 Revised: 29 May 2020 Accepted: 3 June 2020

DOI: 10.1002/ldr.3692

Land Degrad Dev. 2020;1–16. wileyonlinelibrary.com/journal/ldr © 2020 John Wiley & Sons, Ltd. 1

https://orcid.org/0000-0002-0471-7135
mailto:hasi.bagan@nies.go.jp
http://wileyonlinelibrary.com/journal/ldr
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fldr.3692&domain=pdf&date_stamp=2020-07-28


by establishing permanent settlements, providing farm plots with legal

tenure, and building roads to attract migrants from elsewhere in the

country (Bradley & Millington, 2008a; Godoy et al., 1998;

Henkel, 1995; Millington, 2018; Millington, Velez-Liendo, &

Bradley, 2003; Müller, Pacheco, & Montero, 2014; van Gils &

Ugon, 2006). Little original forest now remains due to clearance which

has created a fine-grained mosaic of banana, citrus, palm, and rubber

plantations; pineapple, manioc, rice, and coca fields; pastures; and sec-

ondary forest regrowth (Delgado, 2017).

This land-use mosaic is the result of complex interactions

between deforestation drivers such as selective logging for timber;

forest clearance for coca cultivation, and crops that have been pro-

moted as alternatives to coca; cattle rearing; and infrastructure

development. Settlement in the late 1950s and 1960s led to an

expansion of agriculture in central Chapare (Millington, 2018). The

increase in coca cultivation, associated with the global increase in

cocaine use in the 1970s (Delgado, 2017), stimulated further forest

clearance (Killeen et al., 2008) as farmers began to clear old-growth

forests in southeastern Chapare (Millington et al., 2003; Dávalos

et al., 2011).

Bolivia has alternated between being the second- or third-highest

coca-producing country globally since the 1970s. Illicit coca cultiva-

tion in Bolivia is defined in law by the Bolivian Government. Most

illicit coca is grown in Chapare and a very large proportion ends up in

the cocaine trade (UNODC, 2019). These facts underpin the need to

acknowledge the role of coca in understanding deforestation in

Chapare. It also makes it different to most other deforested areas in

the Amazon Basin, with the exception of a few lowland coca-

producing areas in Colombia and Peru.

The role of coca in deforestation is confounded by the fact that,

unlike most other crops, it is a high-yielding cash crop that requires

low inputs (Grimmelmann, Espinoza, Arnold, & Arning, 2017;

Henkel, 1995) and relatively little land (Bradley & Millington, 2008a;

Kaimowitz, 1997). Therefore, the direct effects of clearing forest to

create coca fields on deforestation rates is probably much less than

the larger indirect impact on forest clearance (Hoffmann, Márquez, &

Krueger, 2018). Grisaffi and Ledebur (2016) argue that attempts to

control coca through eradication and planting alternative crops have

accentuated the diversity of the cropland, plantation, forest clearance,

and regrowth mosaic that characterizes the Chapare.

Issues associated with coca and land use are confounded by the

scarcity of accurate statistics on coca cultivation prior to the establish-

ment of the United Nations Office for Drug Control (UNODC) coca

monitoring system for Bolivia in 2004; which has subsequently pro-

duced annual reports (see UNODC, 2019, for latest report). According

to Henkel (1995) coca cultivation increased from approximately

15,000 to 61,000 ha between 1978 and 1990, while Millington

(2018) shows that coca leaf production in Chapare increased from

11,800 to 36,000 t between 1974 and 1990.

How the direct and indirect effects of all of these drivers have

played out across Chapare is unclear and there is a pressing need for

spatiotemporal quantitative analysis of forest loss; not least so that

effective biodiversity conservation strategies, ecosystem preservation,

and rural development activities can be designed and implemented

(Paneque-Gálvez et al., 2013).

Understanding the potentially scale-dependent, spatiotemporal

variability in deforestation in Chapare is a further challenge. Many

studies have sought to identify the spatial and temporal dynamics of

forest-cover change in the Amazon (Bottazzi & Dao, 2013; Hansen

et al., 2013; Malingreau, Eva, & De Miranda, 2012; Pinto-Ledezma &

Mamani, 2014; Tyukavina et al., 2017). However, a lack of relevant

multitemporal, land-cover maps has limited these efforts because

many land-cover datasets are only available from 2000 or have rela-

tively low spatial resolutions. Both longer time frames and fine-spatial

resolution data are necessary to capture environmental and socioeco-

nomic variability at fine-spatial resolutions when analyzing land-cover

change.

Consequently, the focus of this study is on the use of Landsat

data and GIS techniques to quantify spatiotemporal patterns of

forest-cover change in Chapare from 1986 to 2018. We used sub-

space classification to accurately classify land cover using Landsat

images acquired in 1986, 1999, and 2018. It is difficult to (a) visualize

spatiotemporal patterns of forest change, and (b) quantify relation-

ships between land-cover classes change from the pixel-based transi-

tion matrices generated by many image classification algorithms. The

overcome this a grid-cell methodology was used as an alternative way

to investigate relationships between changes in land-cover classes.

Therefore, its application has direct relevance to improving our under-

standing of the relationships between the growing demand for agri-

cultural land and future deforestation trends, and in understanding

direct and indirect drivers of deforestation.

2 | MATERIALS

2.1 | Study area

The Chapare region we report on covers approximately 9,500 km2.

It is located in the southwestern Amazon Basin and is centered on

16.50�S, 65.00�W (Figure 1a; Grisaffi & Ledebur, 2016). Chapare,

as used in this article, refers to the study area and not the Bolivian

administrative unit called Chapare Province. It is based on one of

the main areas in Bolivia surveyed annually by the UNODC to

monitor coca cultivation. Adjustments to the UNODC area reflect

our understanding of the ecology and colonization of the area

from fieldwork conducted since 1998. The term Chapare has rou-

tinely been used in the scientific literature to refer to this area

(Bradley & Millington, 2008a; Farthing & Kohl, 2010; Grisaffi &

Ledebur, 2016; Henkel, 1995; Killeen et al., 2007; Millington,

2018 and references therein). We have adopted this usage in this

article, while acknowledging the confusion that arises if it is not

defined. The area reported on therefore includes the lowland parts

of Carrasco, Chapare, Ichilo, and Tiraque Provinces of Cocha-

bamba Department (http://data.humdatat.org/datatset/bolivia-

administrative-level-0-3-boundary-polygons): the highland parts

of which are not relevant to this research. Consequently, our
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research findings apply to the lowlands of all four of these

provinces.

The area is located adjacent to the Andes. Large rivers that drain

the Andes to the south traverse the region before joining the Mamoré

River, a major tributary of the Amazon River. The area forms an eco-

tone extending from the forested foothills of the Andes in the south

to swamps and seasonally flooded grasslands and forests in the north.

The lowland areas adjacent to the foothills are not subject to regular

seasonal flooding as they comprise alluvial fans which reach eleva-

tions of around 300 m.a.s.l.. Mean annual rainfall ranges from 2,500

to 7,000 mm, with most falling between October and March (Killeen

et al., 2007; Montes de Oca, 1997).

2.2 | Satellite imagery and field verification data

Free, open-access LANDSAT imagery are highly suited to the detec-

tion of land-cover change (Wulder et al., 2019) in agricultural regions

(Yin et al., 2018), urban areas (Awotwi, Anornu, Quaye-Ballard, &

Annor, 2018), grasslands (Batunacun, Hu, & & Lakes, 2018), and when

analyzing forest-cover dynamics (Achard et al., 2014; Hansen

et al., 2013; Keenan et al., 2015; Lu, Batistella, Mausel, &

Moran, 2007). Moreover, LANDSAT images are ideal for identifying

and characterizing the spatial and temporal relationships between

forest-cover change and other anthropogenic land-cover changes

(Bagan & Yamagata, 2014; Duveiller, Defourny, Desclée, &

Mayaux, 2008). We acquired LANDSAT Thematic Mapper (TM),

Enhanced Thematic Mapper plus (ETM+), and Operational Land

Imager (OLI) Level-1TP data for the study area for 1986, 1999, and

2018 from the US Geological Survey (Table 1). These years were

selected for the following reasons:

1. 1986 was the year with the earliest available cloud-free TM imag-

ery during the 1970s–1980s 'coca boom';

2. in 1999 the area planted to coca was very low after successful

eradication programs during the 1990s; and

3. coca cultivation began to increase again with the growing influ-

ence of the MAS (Movement to Socialism) Party and the election

of Morales-led governments from 2005 to 2019. Therefore, 2018

reflects 18 years of pro-coca policies that were integral to

broader land, agrarian, and social reforms in Bolivia (Farthing &

Kohl, 2010; Grisaffi & Ledebur, 2016; Kohl & Breshahan, 2010;

Morales, 2013).

Cloud-free images were acquired between July and October (the

dry season), when differences in rates of photosynthesis between dif-

ferent land-cover types are at a maximum in the region. They were

preprocessed for standard terrain corrections by the US Geological

Survey. All analyses were based on the optical and thermal infrared

bands of the LANDSAT TM, ETM+, and OLI images: panchromatic

bands were not used. We did not perform the atmospheric correction

process in this study, but the atmospheric correction could be an

improvement (Song, Woodcock, Seto, Lenney, & Macomber, 2001). It

is worth noting that previous studies have shown that using multi-

date image segmentation for classification can improve the robustness

of land-cover change analysis. It helps to reduce the error caused by

using land-cover images independently classified from separate

remote sensing images, and can reduce the problem of error

F IGURE 1 Study area (a) 2018 OLI image (RGB = bands 6, 5, 3), and (b) closer view of some fieldwork plot locations with details of land-cover
information {red rectangle in (a)}. The black lines in (a) indicates the 12 transects, and the blue rectangle in (a) indicates the area covered by the
images in Figure 7 and Figure S3. OLI, Operational Land Imager [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Acquisition dates for the LANDSAT imagery used

Satellite-sensor Acquisition date Path/row

LANDSAT 5 TM October 4, 1986 232/072

LANDSAT 7 ETM+ July 12, 1999 232/072

LANDSAT 8 OLI September 10, 2018 232/072

Abbreviations: ETM+, Enhanced Thematic Mapper Plus; OLI, Operational

Land Imager; TM, Thematic Mapper.
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propagation when using classified images to estimate land-cover

change trajectories (Duveiller et al., 2008; Hussain, Chen, Cheng,

Wei, & Stanley, 2013).

We conducted field campaigns in Chapare in August 2003 and

2007, and September 2015. A total of 450 land-use/land-cover

recording sites were established along 12 transects (Figure 1a).

Recording sites were established in 2003 in central and eastern

Chapare, and sites in western Chapare were added in 2007. When the

sites were first established we aimed for approximately equal numbers

of primary forest; low, medium and high secondary regrowth; swamp

forest and grassland; field crops; tree crop plantations; grassland/

pasture; bare soil; urban fabric and road-land parcels. Once a relatively

large area of a particular land cover was located, a sketch map of the

site with all the land parcels within approximately 250 m in all direc-

tions from a recording point was drawn. A GPS reading was made at

the recording point. Subsequent land-use changes in the region have

led to changes in the proportions of each land-cover class at the

450 sites. In addition, the number of land-cover parcels has changed,

mainly due to conversion of natural vegetation to small fields, and the

merging and splitting of fields. In the 2015 survey, records were

TABLE 2 Description of land-cover types and the number of training and validation samples for images acquired in 1986, 1999, and 2018

Class name Class description

1986 1999 2018

Training Validation Training Validation Training Validation

C1. Water Permanent water bodies, rivers, lakes, and

ponds

473 191 758 239 811 269

C2. Dense swamp

grassland

Dense swamp grass, >80% cover 606 202 419 181 695 223

C3. Sparse swamp

grassland

Low-density swamp grass, with open

expanses of bare ground and standing

water

658 221 822 239 994 223

C4. Bare ground Covered by sand and/or gravel in dry

and wet seasons

460 168 807 245 778 225

C5. Forest in shadow Lower montane forest in shadow, mainly in

the Andes foothills comprising mature trees

forming a dense and structurally complex

canopy with few gaps

433 201 613 222 562 202

C6. Forest, illuminated Illuminated lower montane, mainly in the

Andes foothills comprising mature trees

forming a dense and structurally complex

canopy with few gaps

509 206 676 206 554 204

C7. Dense lowland

forest

Forested areas with low levels of disturbance

that consist of mature trees forming a

dense and structurally complex canopy

with few gaps. It is probable that some

mature secondary forest occurs in the class

893 291 985 245 606 219

C8. Lowland swamp

forest

Flooded forests with varying degrees of

disturbance due to natural dynamics

(e.g., flooding regimes)

508 203 455 207 377 103

C9. Cropland All agricultural fields and plantations with

crops.

558 253 853 219 747 192

C10. Regrowth Early to medium stages of forest

regeneration, identified by shrub and tree

height and indicator plants

282 129 794 206 604 209

C11. Sparse grassland Cleared fields and well-grazed pastures 410 165 742 244 543 150

C12. Dense grassland Areas dominated by dense grassland (>80%

cover), often with shrub regrowth,

indicating abandoned fields and pastures

447 178 965 205 410 151

C13. Medium-density

grassland

Areas dominated by medium-density

grassland (50–80% cover), occasionally

with shrubs. Normally indicative of

pastures with lover grazing density

316 174 661 238 342 161

C14. Urban/built-up All residential, commercial and industrial

areas, including transport infrastructure

498 171 636 224 992 270

Total 7,051 2,753 10,186 3,120 9,015 2,801
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obtained for approximately 2,200 land parcels at the 450 sites. In

addition to recording the land cover for each land parcel within the

vicinity of a recording site, we also noted geomorphological, pedologi-

cal and hydrological information; and took ground photographs.

We tied these sites to the image data with the field GPS readings

(Figure 1b). For the research reported in this article land-cover information

acquired during the field campaigns was converted into 14 land-cover

classes, based on field notes and the visual interpretation of high-spatial

resolution images from WorldView-2 and -3, and from Google Earth and

LANDSAT composites (Table 2). Then, we generated ground reference

samples across the study area and labeled them based on the information

from the field survey records. These reference samples were split into

two sets of samples to generate sets of training sites units and validation

sample units that were spatially separate. Each sample unit contained at

least nine pixels (Congalton & Green, 2008).

3 | METHODS

3.1 | Subspace classification

Subspace methods (Oja, 1983) provide a practical solution for pattern

recognition in image sets (Fukui & Maki, 2015; Park & Konishi, 2019)

and have been applied to remote sensing data by Bagan and Yama-

gata (2012). Recent studies indicate that no single classification

method can fulfil all classification requirements (Abdi, 2019;

Kiang, 2003). Subspace methods provide an alternative to supervised

classification approaches (Bagan, Kinoshita, & Yamagata, 2012). Sub-

space classification was applied to each of the three datasets used in

this research (Table 1). This enables us to report on the first applica-

tion of subspace classification methods to a complex mosaic of humid

tropical forest, cropland, pasture, and secondary regrowth. Such land-

scapes have proven a challenge to land-change scientists using rela-

tively small-spatial resolution, remotely sensed data acquired from the

LANDSAT series of satellites and sensors in the past.

Subspace methods transform the original data from high-

dimensional to low-dimensional feature space, while preserving the

discriminative properties of the different classes. This significantly

reduces computational cost and leads to more feasible subspaces.

Figure 2 illustrates the concept of subspace method classification.

To improve the performance and training stability of the sub-

space method, normalization processing is used to rescale the pixel

values to the 0–1 range. In this research the image data, and training

and validation pixels, were normalized as follows during pre-

processing. Let d be the number of image bands. For a given pixel

x = (x1, x2, …, xd)
T that x is a column vector, the normalized pixel is

computed as:

x= x1=L, x2=L, …, xd=Lð ÞT ð1Þ

where L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + x

2
2 +…+ x2d

q
and the superscript T denotes the matrix

transpose operator. Let x denote the normalized pixel for

convenience.

We denote the subspace of kth land-cover class by Ck, and using

φk,i (1 ≤ i ≤ r, 1 ≤ k ≤ K) to denote the ith basis vector in the kth land-

cover class, which is computed from the class-training sample data

covariance matrix by eigenvalue- and eigenvector-solving algorithms.

Here r is the dimensionality of the subspace Ck, and K denotes the

number of land-cover classes.

Let column vectors sk,i (1 ≤ i ≤ Nk) be a set of training samples of

kth land-cover class, where Nk is the number of training samples

belonging to kth land-cover class. Then we form a matrix

Sk = sk,1, � � �,sk,Nk

� �
. Subsequently the covariance matrix of the subspace

Ck can be evaluated as

Covk =
1

Nk−1
SkS

T
k ð2Þ

This is a multiplication of a d × Nk matrix, Sk, by a Nk × d matrix

STk , which results in a d× d matrix. Than we calculate the eigenvalues

of Covk, and select the r eigenvectors φk,i (1≤ i≤ r, 1≤ k≤K)

corresponding to the first r largest eigenvalues (in decreasing order).

These r eigenvectors are used as basis vectors to form the sub-

space Ck.

The basic class-featuring information compression (CLAFIC) sub-

space method measures the similarity between the pixel x and the kth

class by using the projection norm onto the subspace Ck,

Sk xð Þ= S x,Ckð Þ=
Xr

i=1

xTφk,i

� �2 ð3Þ

The training

samples,

validation

samples, and

are 

image data

normalized to 

[0, 1] using

Equation (1). 

1. Use the training data of each

2. Sort the eigenvalues in

class to calculate the eigenvalues 

and eigenvectors of this class. 

3.

descending order and 

rearranging their corresponding 

eigenvectors. 

Using eigenvectors to create

4. Update

orthonormal basis of subspace

for each class.

5. Create new

covariance matrix

by Equation (5). 

6.

subspace for each

class.

Repeat steps

6. The similarity

(1-5) until the 

desired condition 

is reached.

7. The pixel is then

(projection length) 

between the pixel and 

the subspace of each 

class is calculated by 

equation (3).

labelled by the class 

that has the largest 

projection length.

F IGURE 2 Schematic diagram of the subspace training and classification process
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Consequently, the pixel x is classified into that class whose

squared projection length Sk(x) is maximum. To reduce mis-

classification in the overlapping regions of two or more class sub-

spaces, the CLAFIC method has been modified to the averaged

learning subspace method (ALSM), which adopts the iteration pro-

cess and adaptively computes the subspaces to reduce classifica-

tion error. In ALSM, the following solutions are used to update the

class covariance matrix so that the overlap between subspaces is

reduced.

At iteration t (t > 0), the conditional covariance matrix is calcu-

lated based on the misclassified training pixels as

Cov tð Þ
p,q =

X
x

xxT jx�Cp, x!Cq
� �

, p 6¼ q: ð4Þ

where the symbol “!” denotes that the training pixel x belonging to

pth land-cover class (1 ≤ p ≤ K) has been mislabeled into qth land-cover

class (1 ≤ q ≤ K).

Then, we updated the covariance matrix, which we denote by

Cov tð Þ
p , for pth class as:

Cov tð Þ
p =Cov t−1ð Þ

p + α
XK

q=1,q6¼p

Cov tð Þ
p,q−β

XK
q=1,q 6¼p

Cov tð Þ
q,p ð5Þ

where α and β are small positive constant values, and set the initial

conditional covariance matrix to Cov 0ð Þ
p =Covp: The eigenvalues and

eigenvectors of Cov tð Þ
p are then calculated to generate a new subspace

Cp. Repeat the iterative process until the preset maximum number of

iterations is reached or the required recognition rate is reached

(Bagan & Yamagata, 2010). In this study, the subspace dimensions

were fixed at four for each of the images used.

3.2 | Grid-cell processing

Grid-cell processing was used in this study to investigate whether the

patterns of forest clearance and correlations between changes in

land-cover classes were scale dependent. The grid-cell approach rep-

resents a good compromise between necessary detail and computa-

tional feasibility (Bagan & Yamagata, 2012; Shoman, Alganci, &

Demirel, 2019). For unbiased spatiotemporal analysis and to find par-

ticular spatial characteristics related to deforestation and forest frag-

mentation between two dates, we created nets of grid cells at scales

of 150 × 150 m, 300 × 300 m, 600 × 600 m, and 900 × 900 m cover-

ing the entire study area. We used these different grid-cell scales to

investigate any scale dependency in the relationships between

changes in forest area and changes in other land-cover classes.

Another important advantage of grid cells with unique cell identifiers

is that they enable land-cover maps to be linked unambiguously when

analyzing land-cover change. We explain the procedures for merging

land-cover classes, and for linking grid cells and land-cover classes

below.

First, we merged similar land-cover categories (Table 2) into single

classes for analysis: dense and sparse swamp grassland were merged

into the swamp grassland class; forest in shadow, forest (illuminated),

dense lowland forest, and lowland swamp forest were merged into

the forest class; and dense, medium-density, and sparse grassland

were merged into the grassland class. After merging the target classes,

the merged land-cover maps for 1986, 1999, and 2018 had eight

land-cover types: water, swamp grassland, bare ground, forest, crop-

land, regrowth, grassland, and urban/built-up.

Next, we used the intersection of the 150 m grid cells with the

eight-class land-cover maps to calculate the area of each land-cover

class in each grid-cell, and transferred the results to new attribute

fields using ArcGIS 10.6 software. Finally, we divided the area of each

land-cover class by the area of the grid-cell to calculate the percent-

ages of each grid-cell occupied by each class. We repeated the pro-

cess for grid cells at 300 m, 600 m, and 900 m scales, and transferred

the results, expressed as percentages of the grid-cell occupied by each

class, to new attribute fields.

3.3 | Deforestation rate

We also calculated the annual standardized deforestation rate (ρ)

using percentage of forest cover area (Puyravaud, 2003):

ρ=100×
1

t2−t1
ln

A2

A1

	 

, ð6Þ

where ρ is the annual rate of deforestation (as a percentage), and A1

and A2 are the forest-cover areas in years t1 and t2, respectively.

4 | RESULTS

4.1 | Spatiotemporal changes of the land-cover
classes

The accuracies of the subspace classifications obtained for each image

were evaluated in terms of producer's accuracy and overall accuracy

(Congalton & Green, 2008). The overall accuracies ranged between

75.5 and 78.4% for the 14 land-cover categories (Figure S1).

After creating the eight merged land-cover classes, the classifica-

tion accuracies for the swamp grassland, forest, and grassland classes

improved in that they exhibited less variability and were generally

close to the highest accuracies of the individual classes that had been

merged (Figure 3).

We prepared land-cover classification maps for 1986, 1999, and

2018 (Figure 4a) using the merged classes and calculated the percent-

age of area occupied by each class after merging (Figure 4b). The total

area of agricultural land uses (grassland and cropland) increased from

7.6% of the study area in 1986 to 18.3% (1999) and 20.6% (2018),

while the forest area decreased from 69.8% in 1986 to 40.0% in

2018, with an intermediate value of 58.5% in 1999 (Table 3).
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F IGURE 3 Merged land-
cover classification accuracies (%)
for 1986, 1999, and 2018

F IGURE 4 (a) Land-cover classification maps for 1986, 1999, and 2018 after merging land-cover categories (see Section 3.2 in text); (b) The
percentages of the study area covered by each land-cover class in 1986, 1999, and 2018 [Colour figure can be viewed at wileyonlinelibrary.com]
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The development of the pattern of urban/built-up and bare gro-

und over time in Figure 4 are consistent with the typical fishbone pat-

tern of road network and agricultural settlement growth which is

known to lead to forest fragmentation in the Amazon Basin. In the

Chapare region, small agricultural fields have been cleared adjacent to

feeder roads as they penetrated further into the remaining forest

between 1986 and 2018. The last 19 years have witnessed an accel-

eration in the trend of constructing roads in previously unutilized for-

ests, with pastureland and cropland replacing forests. Figure 4 shows

that cropland and grassland areas have expanded rapidly in this

period. This has been accompanied by a marked decrease in forest

area over the period 1986–2018 indicating an increase in the overall

forest clearance rate, which in turn is related to the relatively low

increase in regrowth between 1986 and 1999, compared to the

period after 1999.

4.2 | Analysis of land-cover change trajectories

We calculated forest density at 150-m scale grid-cell for 1986, 1999,

and 2018 (Figure 5).

To reveal spatiotemporal changes in forest density, we calculated

the percentage changes in forest cover at the 150 m scale for

1986–1999 and 1999–2018 (Figure S2). The value for each grid-cell

for each time interval was calculated by subtracting the forest area in

1986 from that in 1999, and then 1999 from 2018. We then divided

the changes in forest area by the cell area. There has been a trend of

forest clearance across the entire study area from the early nucleus of

settlements in central Chapare between 1986 and 2018. From 1986

to 1999 deforestation mainly occurred in southeastern and central

Chapare, but after 1999 clearance had expanded to cover almost the

entire study area (Figure S2).

TABLE 3 Percentage cover of merged land-cover classes for the study area in 1986, 1999, and 2018

Class 1986 (%) 1999 (%) 2018 (%)

Change in %

1986–1999
Change in %

1999–2018
Change in %

1986–2018

1. Water 2.34 2.74 2.77 0.40 0.03 0.43

2. Swamp grassland 10.27 9.05 17.15 −1.22 8.10 6.88

3. Bare ground 1.31 1.25 1.36 −0.07 0.11 0.05

4. Forest 69.81 58.50 39.99 −11.31 −18.51 −29.83

5. Cropland 3.77 8.76 10.03 4.99 1.26 6.25

6. Regrowth 8.44 9.71 16.07 1.27 6.37 7.64

7. Grassland 3.78 9.54 10.52 5.77 0.98 6.75

8. Urban/built-up 0.28 0.45 2.11 0.17 1.67 1.84

F IGURE 5 Comparison of the spatial distribution of forest percentage in each grid-cell at the 150-m grid scale from 1986 to 2018 [Colour
figure can be viewed at wileyonlinelibrary.com]
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The annual standardized deforestation rates (ρ) were 1.36% for

1986–1999 and 2.0% for 1999–2018: forest was lost more slowly

between 1986 and 1999 than between 1999 and 2018. Using the

data in Table 3 we calculated the total amounts of forest cleared over

the past three decades: 1075 km2 of forest was cleared between

1986 and 1999 and a further 1,760 km2 from 1999 to 2018. Most of

the forest cleared in both time intervals was replaced by either grass-

land (mainly pasture for cattle grazing) or cropland.

We also calculated correlation coefficients between the land-

cover changes for the two intervals (Table S1). These revealed that

forest loss was negatively correlated with increases in swamp grass-

land (r = −.36), cropland (−.33), regrowth (−.43), and grassland (−.46)

between 1986 and 1999.

We calculated changes in the spatial distribution of the percent-

age of forest cover for each grid-cell between 1986 and 2018 at the

150, 300, 600, and 900 m scales (Figure 6). The calculation for each

grid-square cell value was described above (Section 3.2).

We extracted a subset in the west of the study area (Figure 1a,

blue rectangle) to visualize the differences in the spatial patterns of

land cover, forest density, and deforestation at the 150, 300, 600, and

900 m scales more clearly (Figure 7).

The number of fields between feeder roads dramatically

increased as more forest was cleared for cultivation and grazing

between 1986 and 2018, even though the road network did not alter

much (Figure 7a,b). Figure 7c shows that forest clearance increased

rapidly between 1999 and 2018. By comparing percentage changes in

forest cover at 150, 300, 600, and 900 m grid scales for 1986–2018

(Figure 7c,d), it is clear that the 150 m grid extracted useful informa-

tion about forest clearance more clearly than coarser-scale grid cells.

We summarize the land-cover change correlations between 1986 and

2018 at the 150, 300, 600, and 900 m scales in Table S2. The changes

in forest area are strongly negatively correlated with changes in crop-

land, regrowth, swamp grassland, and grassland at all four grid scales.

Although the correlation coefficients between the land-cover cat-

egories at all four-grid scales are similar (Table S2), 150-m grid cells

extract deforestation structures more clearly than grid-cell scales of

300, 600, and 900 m (Figure 6). This, and the fact that the finer grid-

cell scale revealed more spatial detail about deforestation, allows us

to limit the discussion in the next section to the results obtained when

using 150 m scale grids.

Finally, we prepared representative 2D density plots of changes

in land-cover categories at the 900 m grid-cell scale between 1986

F IGURE 6 Comparison of the spatial distribution of the percent change in forest cover at 150, 300, 600, and 900 m grid scales from 1986
to 2018 [Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE 7 (a) Comparison of the land-cover maps for 1986, 1999, and 2018; (b) Forest percentage at 150 m grid scales; (c) Percentage
change in forest cover for 1986–1999, 1999–2018, and 1986–2018 at 150 m grid scales; (d) Percentage change in forest cover at 300, 600, and
900 m grid scales for 1986–2018. The area in each of these images is indicated by the blue rectangle in Figure 1a [Colour figure can be viewed at
wileyonlinelibrary.com]
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and 2018 (Figure 8). These confirm that large areas of forest have

been converted to cropland, grassland, and regrowth during the last

three decades.

Grid cell-based land-cover change trajectories analysis enabled

land-cover maps to be linked unambiguously and therefore provided

reliable information on land-cover change for the same areas. This is

an improvement in comparisons made between pixel-based compari-

sons, and provides a high level of confidence in the results.

5 | DISCUSSION

The discussion focuses initially on broad trends in land-cover change

in the Chapare region, before analyzing the land-cover changes that

have taken place through inferences drawn from spatial patterns and

quantitative analyses. Given that Chapare is a globally important coca

source region, the ability to determine the direct and indirect effects

of coca cultivation on deforestation from this research is analyzed.

Finally, key environmental and methodological issues used are

discussed.

In terms of the main land-use conversion trajectories, change

detection analysis revealed that 435.9 and 363.1 km2 of forest were

converted to grassland (pasture) and cropland between 1986 and

1999, respectively (Figure S2). While between 1999 and 2018, 397.2

and 352.0 km2 of forest were converted to grassland and cropland.

These trends are consistent with other research from the Amazon

Basin where in-migration, settlement, and agricultural expansion are

key deforestation drivers (De Sy et al., 2015; Grinand et al., 2013).

The parallel trends of declining forest cover and increasing amounts

of cropland and pasture are intuitive for an area that has been colo-

nized by migrants who have been encouraged to develop an agricul-

tural frontier by the Bolivian Government.

The forest losses must be considered 'net' losses because some

cleared areas may have regenerated to the stage of mature secondary

forest in the two time frames considered, though our knowledge of

the area suggests that these areas will be a relatively small. Both the

net forest losses and the broad land-use changes mask the fact that

forest has been replaced by a fine-grained mosaic of many different

crops, pasture, and regrowth of various ages across Chapare in the

last 32 years. This multiplicity of land-uses has resulted from

F IGURE 8 2D density plots (using Gaussian kernel density estimate) of percent change in land-cover categories during the study period at
900-m grid scale. The correlations were calculated using data for all 11,447 900-m scale grid-cells. Dashed lines and equations represent the
results of linear regression analysis applied to all data [Colour figure can be viewed at wileyonlinelibrary.com]
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economic decisions made by individual farmers in response to various

agricultural policies which have changed significantly over the time

frame of the research. The fine grain of the resulting landscape is cre-

ated by farmers being given long, narrow areas to farm, and the fact

that these areas are then divided into many fields over time

(Bradley & Millington, 2008a; Bradley & Millington, 2008b). From the

remote sensing point-of-view large tracts of terrestrial or swamp for-

est, which are relatively spectrally homogenous at the spatial resolu-

tions of LANDSAT series sensors, have been replaced a far more

spectrally heterogeneous landscape.

While the rates of forest conversion were rather higher after

1999; the rates of increase in the cropland and grassland were similar

before and after 1999 (Table 3). This suggests the loss of forest to

cropland and grassland is not a straightforward process and requires

further investigation. It was not possible to validate these apparently

constant increases in cropland and pasture areas over the 1986–2018

time frame for Chapare with an independent data set, as the highly

detailed third national agricultural census in 2013 (Estado Plu-

rionacional de Bolivia, , 2015) cannot be compared to the much less

detailed 1984 agricultural census with any clarity.

As the increases in cropland and grassland (pasture) have

followed similar trajectories since 1986, the cropland-pasture mix

must have remained more-or-less the same across the region. This

also means that cropland-pasture mix in central and southeastern

Chapare that existed before 1999 has been replicated as the

remaining forest in central and southeastern Chapare has been

cleared; and as the main thrust of settlement and clearance shifted

northwestwards after 1999. Interestingly this has occurred despite

environmental differences, particularly soil properties and hydrological

conditions, that exist across the area.

As intimated earlier, it is not possible to discuss forest conver-

sion in Chapare without considering the role of coca. Given the fact

that the cropland-pasture mix has remained more-or-less the same

since 1986, it might be concluded that coca has had little influence

on forest conversion. However, as the amounts of coca grown have

varied significantly over the 32 years studied (UNODC, 2019, and

UNODC reports from 2005 to 2018), as has the effectiveness of

implementing anti-narcotic policies (Bradley & Millington, 2008a),

that might be a false conclusion. The research we conducted did not

enable us to determine any direct effects of coca on forest conver-

sion in Chapare. This was due to the fact that: (a) individual land par-

cels of different crops cannot be determined with Landsat series

data due to the spectral similarities of many crops and the small

areas of cultivation; (b) the contributions of very small coca fields

(Kaimowitz, 1997) to the overall cropland pattern are marginal com-

pared to the total cultivated area; and (c) the fact that farmers switch

between coca and other field crops with relative ease. UNODC have

used fine-spatial resolution imagery acquired by spaceborne and air-

borne sensors since 2004 in coca monitoring, but the results are lim-

ited in terms of determining land-use trajectories. Moreover, it is not

possible to undertake such analysis back to the 'coca boom' because

fine-scale, multispectral imagery is unavailable for the 1970s and

1980s.

Hoffman et al., (Hoffmann et al., 2018) suggest the indirect

effects of coca cultivation on forest loss are probably greater than

direct effects. Coca is a frequent component of the land-use mix in

areas of new colonization on the peripheries of the cultivated zone in

Chapare (Bradley & Millington, 2008a). In such locations it has been

often grown with less surveillance than other parts of Chapare in

these areas. To provide an initial test of this imagery from a peripheral

area in northwest Chapare, where our field observations have

recorded pioneer settlements with a land-use mosaic of large tracts of

uncleared forest, very small areas of cropland (mostly coca fields), and

intermediate amounts of pasture is provided in Figure S3.

The 1986 maps show that settlers had used geophysical surveys

lines cut through primary forest as lines of access to settle in the area

and create farms. By this time, the cropland and grassland areas had

not encroached far into the primary forest. We do not have contem-

porary field data from this area, but Bradley and Millington (2008a)

show that farms in similar, early stages of settlement in central

Chapare often had coca as part of their crop mix. Farmers then

cleared back from the tracks to create longer farms with more crop-

land and pasture. More extensive clearance with increased areas of

pasture and cropland, and less primary forest, is clear in the 1999 and

2018 images. Field surveys conducted in this area (August 2007 and

September 2015) indicate that grazing and coca cultivation dominate

post-clearance land uses in the region covered by Figure S3. However,

any arguments that can be made about the indirect (or direct) roles of

coca in this area cannot be based on remotely sensed data alone: it

requires both field observations and an understanding of the geo-

graphical context. We conclude that it is not possible to unambigu-

ously map the indirect effects of coca on deforestation in Chapare

using time sequence of LANDSAT data alone.

What then can we deduce about the drivers of deforestation in

this region from this remote sensing and GIS analysis? The evidence

presented in Figure 7 signals the important role of road building in

fragmenting forests that has been noted by other researchers

(Davidson et al., 2012; Dissanayake et al., 2019). We can infer from

this that the fishbone forest clearance pattern (Figure 5), which has

been observed frequently in the Amazon Basin (de Filho &

Metzger, 2006; Ewers & Laurance, 2006) is present. This was noted

earlier in central and southeastern Chapare (Millington et al., 2003)

and analyzed in the lowlands of Carrasco Province (southeast

Chapare) by van Gils and Loza Armand Ugon (2006). Applying Brad-

ley and Millington's (2008b) theoretical model of forest fragmenta-

tion to the spatial patterns of forest fragmentation shown in this

article, confirms that the fishbone pattern arises from a combination

of road building and government land grants along the roads

throughout Chapare. We argue that an integrated road-land grant

driver of deforestation should be considered in areas like Chapare

where there has been very little spontaneous colonization of for-

ested areas in the time frame of this research. The introduction of

such an integrated driver into the land-use/land-cover change litera-

ture would provide a mechanism to support Fernández-Llamazares

et al.'s (2018) finding that the extension of road networks increases

deforestation rates.
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The percentages of cropland and grassland in Chapare increased

by factors of 2.6 and 2.8 between 1986 and 2018, respectively

(Table 3 and Figure 4b). While metrics like these provide headline fig-

ures, caution should be exercised in applying them across large areas.

In the case of Chapare the increases in the proportions of cropland

and grassland to 1999 can only be applied to central and southeastern

Chapare with any certainty. While after 1999, they can be applied

more broadly to the region. However, even after 1999 an issue arises

because the forest clearance, cultivation, and pastoral, frontiers were

mainly in northwestern and the remoter parts of central and south-

eastern Chapare. It is worthwhile noting that the deforestation rates

and net forest losses obtained from this study are higher than the

average deforestation rate of 1% for Bolivia (Armenteras, María,

Rodríguez, & Retana, 2017) and the country's net loss of forest area

(FAO, 2015).

The correlations between the changes in land-cover categories

over the two time periods studied lend support to these arguments in

that forest losses are negatively correlated with increases in cropland

and grassland. Correlation coefficients of forest loss and increases in

cropland were slightly weaker in 1999–2018 (r = −.27) compared to

1986–1999 (r = −.33), while those between forest losses and grass-

land were much stronger for 1986–1999 (r = −.46) than for

1999–2018 (r = −.21; Table S1). However, the lower correlation coef-

ficients of forest-cropland and forest-pasture conversion in the sec-

ond time period do not readily lend support to the fact that the

cropland-pasture balance has changed little since 1986. The relation-

ships between cropland and regrowth, and grassland and regrowth,

are potentially important in explaining this. Cropland-regrowth

dynamics are of particular importance because many of the annual

crops in the region are grown under a slash-and-burn systems—the

intensity of which varies with population and cultivation densities;

and the amount of alternative crops grown during periods when anti-

narcotic policies were enforced, particularly in the 1990s. This also

applies to some other crops which are grown for only a few years

before fields are abandoned, for example, pineapples and heart of

palm. Between 1986 and 1999, 26.0 km2 of cropland reverted to

regrowth, while from 1999 to 2018 this rose to 213.0 km2, which

may be due to more fields being left to fallow in central and south-

eastern Chapare before 1999 when there was a relatively large pool

of primary forest. However, as more people have migrated to the

Chapare, land has become scarcer (pers. comm. Susanna Arrazola,

Centro de Biodiversidad y Genética, Universidad Mayor San Simon,

Cochabamba). Land grants have become smaller and farmers cannot

afford large proportions of their farms to remain as fallow regrowth.

That, along with the more permanent cultivation patterns that now

exist in central and southeastern Chapare, will have reduced the pro-

portion of cultivable land that can be under fallow regrowth. It is

worthwhile noting that the results from the quantitative analysis

obtained using the grid-cell-based approach could not easily have

been generated in pixel-based analysis. Although the results obtained

at the finer grid-cell scale of 150 m revealed more spatial detail about

deforestation, the relationship between grid-cell scale and quantita-

tive analysis is unclear and requires further investigation.

In terms of environmental outcomes, the replacement of tropical

forest with agriculture accentuates flooding and soil erosion (Souza-

Filho et al., 2016). This will be the case in Chapare (Torrico, Pohlan, &

Janssens, 2005) and will particularly affect the newer farming settle-

ments that are already susceptible to seasonal flooding in the north of

Chapare. Local microclimates have already been impacted by the

replacement of forest with grasses, annual and perennial crops. In

addition to this local effect, carbon emissions associated with the

land-use changes and a reduction in carbon sequestration capacity,

will have contributed to climate change globally (Marques

et al., 2019). Land-cover change can also have additional biophysical

effects, such as local temperature changes (Duveiller et al., 2020). The

new agroecosystems created will also have impacted directly on biodi-

versity in the region. Therefore, routine application of the techniques

outlined in this research is necessary if Bolivia is to manage the eco-

system services that Chapare provides.

The subspace method used classified the image data into several

classes based on a set of class subspaces, which were generated from

a set of training samples of each class using principal component anal-

ysis. One of the main stated advantages of subspace over other classi-

fication methods is that continual updating of the class covariance

matrices reduces the overlap between class subspaces in the learning

phase of the procedure. While this provided clarity for most classes,

we noticed that discrimination between the urban/built-up and bare

ground classes was still limited, as it was to a lesser extent for forest

and regrowth. This is due to the similar spectral characteristics

between the pairs of classes in both cases (Figure S1). These issues

are potentially problematic in understanding land-use dynamics in the

region because the bare ground class represents areas of soil which

are being cultivated and highly degraded pasture, and needs to be dif-

ferentiated from urban expansion and other changes to infrastructure.

In the case of forest and regrowth created some of the issues around

interpreting the role of regrowth in understanding forest-cropland

dynamics. These problems are unlikely to be resolved with visible and

shortwave infrared data, and future research should combine optical

and synthetic aperture radar remote sensing data to improve the

between discrimination of urban/built-up and bare ground classes, or

extend the subspace method by adopting a nonlinear transformation

defined by kernel functions (Park & Konishi, 2019).

6 | CONCLUSIONS

The 32 years from 1986 to 2018 witnessed an acceleration in the

transformation of natural forests to a fine-grained mosaic of cultiva-

tion and grazing, secondary forest regrowth, forest remnants, and

agricultural settlements in Chapare: a process began in the late 1950s

and early 1960s.

Almost a third of the forest that remained in 1986 (2,835 ha) had

been lost by 2018. Forest clearance has accelerated since 1986, with

mean annual deforestation rates increasing from 1.36% (1986–1999)

to 2.0% after 1999. In addition, the locus of deforestation has shifted

from central and southeastern Chapare to the northwest. The
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deforestation rates and net forest losses in Chapare are higher than

the average deforestation rate, and the net loss of forest area, for

Bolivia. The main drivers of tropical forest conversion in the region

have been in-migration, settlement, and agricultural expansion. We

suggest that government-led development of the road network, which

is very closely tied to government land grants to farmers, should be

combined into a road-land grant driver. However, we were unable to

identify either direct or indirect effects of coca on forest loss in the

region. The net outcome of all deforestation drivers in the area has

been that natural forested landscapes have been replaced by a highly

altered fine-grained anthropic landscape driven by an expanding agri-

cultural frontiers.

This study is applicable to discussions about potential future

anthropogenic land-cover changes in other tropical forest areas. It

provides insights that may be useful for informing policy and land-use

planning, and accounting for the spatial and temporal dynamics of

land-change trajectories in trying to achieve development and conser-

vation targets.
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