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A B S T R A C T   

This paper empirically analyzes the productivity effects of road infrastructure incorporating spatial spillover 
effects using a global database, which was originally developed in 2010 at a grid-cell scale of 0.1-degree covering 
all land areas in the world by integrating national-level statistical socio-economic data with available global data 
sources of nighttime lights imagery, global population database, and global road network. A macroscopic Hicks- 
neutral Cobb-Douglas production function, containing input factors of capital stock, labor force, and road 
infrastructure is estimated with the global dataset of 14,565 aggregated grids at 1.0-degree grid-cell scale, using 
ordinary least squares, spatial error model, spatial lag model, and spatial Durbin model (SDM). The statistical 
tests suggest that there is significant spatial dependence particularly in the error term and the overall results of 
the model estimations indicate that the SDM outperforms other models. The estimates of SDM further show that 
the direct impact of road infrastructure is significantly negative, spatial spillover effect is significantly positive, 
and overall effect is positive but insignificant.   

1. Introduction 

Investments in road infrastructure have risen significantly globally in 
the last few decades. By 2050, the total road length worldwide is ex-
pected to increase by 60% over the 2010 level (Dulac, 2013). This global 
road rush has been driven by population growth in developing regions, 
and increasing urbanization and demand for motorized mobility, mainly 
in emerging countries (Schafer and Victor, 2000). Developing countries 
are currently spending approximately US$ 1 trillion each year for road 
development. International organizations, such as the Global Infra-
structure Facility established by the World Bank, have been helping to 
meet this increased infrastructure demand in those countries (World 
Bank, 2014). 

One reason for the significant growth in road infrastructure is that 
road development is expected to bring about positive productivity im-
pacts and economic growth. Many governments believe road infra-
structure plays a vital role in enhancing regional economic output. This 
has been justified by empirical studies, including the pioneering works 
of Aschauer (1989) and Munnell (1990a). However, along with the 
emergence of new economic geography and spatial economics, studies 
have also reported the negative impacts of road infrastructure (Puga, 

2002; Arbués et al., 2014). As pointed out by Deng (2013), whether the 
economic impacts of transportation infrastructure are positive or nega-
tive is highly dependent on local/regional contexts. Although many 
studies have reported empirical results through case studies in specific 
regions or nations, few studies have attempted to report empirical evi-
dence from around the world. 

Road infrastructure is also believed to have spatial spillover effects. 
As road development has significant effects on the spatial redistribution 
of input factors, better road connections between two regions could lead 
to better connectivity but could also harm the lagging regions due to the 
removal of trade barriers and lead to extreme gaps in economic per-
formance or “core-periphery” structure (Krugman, 1991). From the 
viewpoint of international development, road infrastructure, often 
called spatially connective infrastructure, is an essential element in 
achieving inclusive development globally because the connectivity of 
landlocked nations to the global trading system is critical for their 
trading (World Bank, 2009; Arvis et al., 2010). Although many studies 
have demonstrated the spatial spillover effects of transportation infra-
structure (Cohen and Morrison Paul, 2004; Joseph and Ozbay, 2006; 
Tong et al., 2013), some have also provided empirical evidence by way 
of case studies on the potential impact of transportation infrastructure 
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investment on regional economies in remote areas (Tanabe et al., 2016; 
Li et al., 2017; Shibasaki et al., 2020). To the best of our knowledge, no 
study has shown evidence for spatial spillover effects of transportation 
infrastructure on a global scale. 

This study attempts to fill this gap by empirically examining the 
economic impact of road infrastructure incorporating spatial spillover 
effects on a global scale. It hypothesizes that road infrastructure has a 
positive association with regional economic productivity globally. The 
productivity effects are estimated with a global dataset using a simple 
macroscopic production function that follows the Cobb-Douglas speci-
fication and is assumed to contain factors of capital stock, labor force, 
and road infrastructure. The production function is empirically esti-
mated with spatial dependence models to incorporate spatial interaction 
effects, using the global dataset, which was initially organized into a 
gridded spatial scale resolution of 0.1-degree using a satellite image and 
geographic information system. This study covers 178 countries using a 
global mapping database (TM_WORLD_BORDERS-0.3) in ArcGIS. One of 
the uniqueness of this study is to present global evidence about the as-
sociation of road infrastructure with its productivity effect, using a 
global dataset. Existing empirical studies have limited geographical 
scopes, typically within a single country or region. In contrast, this study 
offers evidence based on an unlimited scope, the world, enabling us to 
determine the average productivity effect of road infrastructure on a 
global scale. Another uniqueness of this study is an empirical analysis 
that uses grid-based data. Due to data availability constraints, most of 
the past empirical studies have been inevitably affected by the size or 
shape of existing administrative units. In comparison, our analysis is 
independent of administrative borders as it employs satellite data with a 
geographical information system. This enables us to estimate the less 
biased effect from road infrastructure. However, this study has a critical 
limitation in the cross-sectional analysis. Although the endogeneity 
issue is addressed by introducing an instrument, the findings from this 
study indicate the correlation, rather than the causal effect, between 
road infrastructure and regional productivity. Nevertheless, our evi-
dence should be unique, and useful for policymakers in helping them to 
devise better economic strategies related to road infrastructure. 

The remainder of this paper is organized as follows. Section 2 re-
views the literature on the economic effects of transportation infra-
structure and its spatial spillover effects. Section 3 describes the models 
used for empirical analysis, followed by specific details on data acqui-
sition and dataset development. Section 4 presents the results of the 
model estimation, and Section 5 presents the discussions. The final 
Section 6 concludes the paper. 

2. Literature review 

In theory, transportation infrastructure is widely believed to be one 
of the critical factors influencing private output. Economic theories and 
regional science research submit that transportation has some impact on 
the economy. Classical urban economic theory proposes that trans-
portation cost is a determinant of the location of economic activities 
(Alonso, 1964; Muth, 1969; Mills, 1972). New economic geography 
highlights transportation cost as a location factor typically under a 
theoretical framework of monopolistic competitive markets (Krugman, 
1991; Fujita et al., 1999; Fujita and Thisse, 2002), and growth theory 
often hypothesizes transportation investment as a change in factor 
input, or a change in technology (Aschauer, 1989; Munnell, 1990a, 
1990b). Generally, infrastructure can affect regional output in two ways: 
(1) directly, through an additional input in the production process in 
other sectors (for instance, improving road infrastructure directly re-
duces travel cost and enhances accessibility such as shorter trip distance, 
lower traffic congestion, and faster travel speed, which contributes to 
lower capital and labor costs, creates jobs, stimulates trade, and in-
creases private investment); and (2) indirectly, through raising eco-
nomic productivity by reducing transaction costs, allowing more 
efficient use of other inputs for production, and even inducing 

agglomeration economies (Graham, 2007; Crafts 2009; Chatman and 
Noland, 2011; Faber, 2014). For instance, transportation infrastructure 
could stimulate innovative activities through better inter-regional 
communication among workers and increased participation of in-
dividuals in innovative activities in business clusters, both of which 
could lead to increased total factor productivity (de Groot et al., 2009; 
Wetwitoo and Kato, 2017). 

Another important effect of transportation infrastructure investment 
is the so-called “spatial spillover effect” (Rietveld, 1994; Holtz-Eakin 
and Schwartz, 1995; Boarnet, 1998). Spatial spillover is the effect spread 
beyond the geographical boundary. Road development can enlarge the 
market in its own region while spreading its impact to neighboring re-
gions. Hu and Liu (2010) summarize the positive geographical exter-
nalities of transportation into: (1) opening up of the export market, (2) 
spatial movement of labor, (3) reduction in wealth gap and improved 
social welfare, and (4) economies of scale, which can only be achieved 
when development of transportation makes the spatial expansion of the 
market possible. In contrast, as some studies have shown, an economic 
increase in one area can cause an economic decrease in another area 
through the flow of capital, human, and production factors along the 
transportation infrastructure (Li et al., 2017). 

Several empirical studies have attempted to estimate the economic 
productivity effect of infrastructure since the 1970s. Early studies 
attempted to measure the effects of aggregated public capital on eco-
nomic productivity with a simple macroeconomic regional production 
function (Mera, 1973; Costa et al., 1987; Aschauer, 1989; Munnel, 
1990a, 1990b). For instance, Aschauer (1989) estimated a 
Cobb-Douglas production function using time-series data from 1949 to 
1985 and concluded that output elasticity with respect to public capital 
is 0.39. This was confirmed by Munnell (1990a), who showed that 
elasticity is 0.33. Other studies also supported the positive elasticity, 
although with smaller effects (Garcia-Mila and McGuire, 1992; Holt-
z-Eakin and Schwartz, 1995; Fernald, 1999). Meanwhile, some studies 
have shown insignificant or negative elasticity (Andrews and Swanson, 
1995; Evans and Karras, 1994; Holtz-Eakin, 1993; Garcia-Mila et al., 
1996). This debate was examined in the World Development Report 
(World Bank, 1994) in a literature review of a wide range of empirical 
results. These studies stimulated further investigations into the rela-
tionship between economic productivity and specific sectors of infra-
structure. Subsequent studies introduced more sophisticated 
econometric techniques for identifying the economic impact of trans-
portation infrastructure. In the 1990s, empirical studies have incorpo-
rated the idea of spatial spillover effects into infrastructure productivity 
analysis. Munnell (1992) was one of the earliest to indicate the possible 
existence of regional spatial spillover effects of road infrastructure. 
However, some researchers have debated this result (Holtz-Eakin and 
Schwartz, 1995; Ozbay et al., 2007; Sloboda and Yao, 2008). Boarnet 
(1998) hypothesized that road infrastructure influences economic ac-
tivity by spatially shifting its location, and is different from the idea of 
spatial spillover effects. Berechman et al. (2006) investigated the spatial 
spillover effects of highway infrastructure at different geographical 
levels and concluded that spatial spillover effects can be observed at the 
municipal level but not at a larger regional scale. Aside from the cases in 
the United States, Cantos et al. (2005) confirmed the existence of spatial 
spillover effects of road infrastructure in 17 regions in Spain. The late 
1990s onwards, along with further development in spatial econometrics 
(Anselin, 1988a; LeSage and Pace, 2009), various advanced econometric 
models have been employed to capture the spatial externalities from 
road infrastructure (Moreno and Lopez-Bazo, 2007; Cohen, 2010; 
Arbués et al., 2015; Álvarez et al., 2016). These studies integrated 
spatial effects into the Cobb–Douglas production function by adding a 
spatial lag, which represents the effect of neighboring regions. Kelejian 
and Robinson (1997) was one of the first to incorporate spatial lag into 
the Cobb-Douglas production function and suggested the conditions 
under which the spatial lag can be ignored. Soon after, the spatial lag 
was introduced into other studies as well. In the United States, Cohen 
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(2010) considered spatial effects as dependent variables and reported 
positive elasticity of highway capital, and Tong et al. (2013) applied 
spatial lag into both dependent and independent variables to explain 
agriculture output from road infrastructure investment. Del Bo and 
Florio (2012) also measured the productivity of motorways and other 
roads using a similar model in European regions, finding that motorways 
do not show spillover effects, but other roadways show positive spillover 
effects. 

Many studies have shown empirical evidence on the output elasticity 
of road infrastructure, with mixed results. Deng (2013) conducted an 
extensive literature survey highlighting the contribution of trans-
portation infrastructure to productivity and economic growth and pro-
vided many reasons for the contentious results, including research 
period, geographical scale, different types of transportation infrastruc-
ture, and different ways of measuring. Melo et al. (2013) also conducted 
a meta-analysis of the empirical evidence on the output elasticity of 
transportation infrastructure, and showed that the existing estimates of 
the productivity effect of transportation infrastructure, which can vary 
across main industry groups, tend to be higher for the US economy than 
for European ones, and are higher for roads compared to other modes of 
transportation. Roberts et al. (2020) also showed the results of a quan-
titative meta-analysis on the wider economic benefits from trans-
portation corridor investment. It should be noted that many studies have 
focused on developed economies, of North America and Europe for 
instance, whereas only a few have analyzed developing economies. 
Some studies have attempted to cover developing regions (for instance, 
Canning, 1999; Canning and Bennathan, 2000; Calderón and Servén, 
2004; Boopen, 2006); however, their scope is often limited to a regional 
or national scale. Additionally, most of the empirical studies covering 
developing regions did not apply the idea of spatial spillover effects, 
although such effects of road infrastructure should be particularly 
important for those countries because their public finances are highly 
constrained (Boopen, 2006). 

Finally, theoretical approaches have been recently explored, by 
economists such as Donaldson and Hornbeck (2016), to estimate the 
causal effects of highways on regional output and population. In contrast 
to conventional econometric analyses, this study employs an approach, 
based on the model proposed by Eaton and Kortum (2002), which 
explicitly accounts for general equilibrium effects, and estimates the 
economic impacts of transportation infrastructure in a reduced form. A 
similar approach is also employed by Tombe and Zhu (2019), and Alder 
(2019); however, as Baum-Snow et al. (2016) pointed out, the price of 
an explicit model of general equilibrium effects is high. 

3. Method 

3.1. Models 

This study follows a general approach to investigate the association 
of road infrastructure with economic output, using a production func-
tion with two input factors: labor and capital. We assume that road 
infrastructure is a technological factor and employ the following pro-
duction function with Hicks-neutrality as: 

Yi = f (Xi)⋅g(Ti) (1)  

where Yi denotes the private output of region i; f( ⋅) represents pro-
duction technology, including a vector of direct input factors Xi; and g( ⋅)
represents a Hicks-neutral shift factor containing road infrastructure 
stock Ti. The direct input factors are private capital (Ki) and labor force 
(Li). The above equation assumes that road infrastructure is a frontier 
shifter that increases the efficiency of other production inputs (Boarnet, 
1998; Tong et al., 2013). An empirical model is often specified with a 
log-linear Cobb–Douglas production function as: 

lnYi = β0 + βKlnKi + βLlnLi + βT lnTi + εi (2)  

where β0 is the intercept and βm (m = K, L, and T) is the coefficient of the 
independent variables, and εi is an error component. βT represents the 
productivity effect of road infrastructure, our main concern. This model 
is an ordinary least squares (OLS) model. Note that other types of 
specifications, such as a trans-log function, have also been used (Pinnoi, 
1994), but this study uses the Cobb-Douglas function for simplicity. The 
model shown in eq. (2) does not consider the spatial impacts of road 
infrastructure and is formulated as if the roads are not used by the 
corresponding economic agents in the neighboring regions. 

Previous studies suggest that spatial dependence be considered when 
handling spatial effects (Anselin, 1988a, 1988b; Anselin and Bera, 
1998). Spatial dependence represents a correlation between the values 
of a random variable at its own location and the values of the same 
variable at neighboring locations, while geographically closer implies a 
greater impact. There are many reasons why a model would exhibit 
spatial autocorrelation. One reason is possible omitted variables that 
vary spatially or common shocks that spill across geographic bound-
aries; for example, decision makers in a given region are potentially 
influenced by the decisions taken in other regions. Ignoring spatial 
dependence could cause biased estimation results, which motivates the 
use of spatial models rather than a simple OLS-based Cobb-Douglas 
production function. 

Elhorst (2013) shows that there are three types of spatial interaction 
effects that explain spatial dependence between observations: (1) the 
interaction effects of error terms, where the error term of location i 
depends on the error term of location j, and vice versa; (2) endogenous 
interaction effects, where the dependent variable of a particular location 
i depends on the dependent variable of another location j, and vice versa; 
and (3) exogenous interaction effects, where the explanatory variable of 
location i depends on the explanatory variable of location j, and vice 
versa. 

Departing from an OLS model, which can be regarded as the most 
restricted form of a spatial dependence model, the spatial error model 
(SEM) allows spatial interaction in error terms to be specified as follows: 

lnYi = β0 + βKlnKi + βLlnLi + βT lnTi + εi, εi = λ
∑N

j=1
wijεj + μi (3)  

where 
∑N

j=1
wijεj are the interaction terms among error components ε, wij is 

an element of the row-standardized spatial weight matrix that describes 
the degree of spatial relatedness, N is the number of neighboring re-
gions, and λ is a spatial autocorrelation coefficient. SEM suggests that 
spatial dependence exists only in the error term and assumes that spatial 
dependence is due to omitted spatially correlated variables or the 
boundaries of spatial regions not coinciding with actual behavior units 
(Zhang et al., 2009). This specification is appropriate when the concern 
is to correct the potential influence of spatial autocorrelation caused by 
using spatial data. 

Similarly, the spatial lag model (SLM) can be specified by including 
the endogenous interaction effects as 

lnYi = ρ
∑N

j=1
wijlnYj + β0 + βKlnKi + βLlnLi + βT lnTi + εi (4)  

where 
∑N

j=1
wijlnYj are the interaction terms among the dependent variable 

Y and ρ is the spatial autocorrelation coefficient. This model illustrates 
that the dependent variable at a location is influenced not only by 
explanatory variables at one location but also by the dependent variable 
at neighboring locations. In a cross-sectional data analysis, SLM can be 
interpreted as the equilibrium outcome of the spatial or social interac-
tion process, in which the dependent variable for one economic agent is 
jointly determined with that of the neighboring agents (Brueckner, 
2003). 
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To account for the exogenous interaction effects, Boarnet (1998) 
incorporated the stock of road infrastructure in neighboring regions as 
an additional production input factor. This can be specified by trans-
forming Eq. (2) into: 

lnYi = β0 + βKlnKi + βLlnLi + βTllnTl
i + βTnlnTn

i + εi (5)  

where Tl
i denotes the local road infrastructure stock and Tn

i represents 
the neighboring regions’ road infrastructure stock. Boarnet (1998) de-

fines Tn
i this as 

∑N

j=1
wijTj. 

Some models that partially combine the above three effects have also 
been proposed. The spatial Durbin model (SDM) is one such model, 
which incorporates the endogenous and exogenous interaction effects 
as: 

lnYi = ρ
∑N

j=1
wijlnYj + β0 + βKlnKi + βLlnLi + βT lnTi  

+θK

∑N

j=1
wijlnKj + θL

∑N

j=1
wijlnLj + θT

∑N

j=1
wijlnTj + εi (6)  

where θX is the spatial autocorrelation coefficient (X = K, L, T). SDM is 
useful because it captures the contribution of explanatory variables both 
in and outside of a given location to the dependent variable, which can 
be translated into spatial spillover effects (Del Bo and Florio, 2012; Tong 
et al., 2013; Yu et al., 2013). Moreover, SDM is the only model that 
produces an unbiased estimator in all possible spatial data modeling 
(LeSage and Pace, 2009). The omitted variable problem is also less likely 
to be observed because of including spatial lags in the explanatory 
variables, which means that this model is the most appropriate for this 
study. 

It should be noted that a model incorporating all types of spatial 
effects takes the form 

lnYi = ρ
∑N

j=1
wijlnYj + β0 + βKlnKi + βLlnLi + βT lnTi  

+θK

∑N

j=1
wijlnKj + θL

∑N

j=1
wijlnLj + θT

∑N

j=1
wijlnTj + εi  

εi = λ
∑N

j=1
wijεj + μi (7) 

This is the most general spatial dependence model, often called the 
Manski (1993) model. Elhorst (2010) summarized seven linear spatial 
dependence models, where other models can be derived from the 
Manski model by imposing restrictions on one or more spatial parame-
ters. Although the Manski model enables the incorporation of spatial 
lags into all variables, Elhorst (2010) found that the parameter estimates 
of the endogenous and exogenous interaction effects are biased when all 
spatial spillover effects are considered. Estimating with the Manski 
model is technically feasible, but it is impossible to separately identify 
the interaction effects from the corresponding estimated parameters 
(Elhorst, 2010). To overcome this, LeSage and Pace (2009) proposed the 
exclusion of interaction effects in the error term, taking SDM as a general 
model. Elhorst (2010) pointed out that the cost of ignoring spatial 
dependence in the disturbances is less serious than that of ignoring 
spatial dependence in the dependent and/or independent variables, 
because the former only causes a loss of estimation efficiency. Addi-
tionally, the spatial Durbin model enables the production of unbiased 
coefficient estimates. This study also follows their proposal; hence, we 
use SEM, SLM, and SDM models in our empirical analysis. 

3.2. Data 

3.2.1. Data acquisition 
This study employs a gridded dataset covering the world to estimate 

spatial spillover effects. Although recent technological developments 
have enabled us to access various kinds of global gridded databases, they 
are not directly applicable to our estimation. Our empirical analysis 
processes the data of nighttime lights imagery, global population data-
base, and global road database with national-level socio-economic data 
for preparing the global gridded dataset. Table 1 summarizes the sources 
of data used to construct our dataset. 

The study used the following sources for the data and imagery. First, 
the socio-economic data contains gross domestic product (GDP), GDP 
composition by sector, physical capital stock, and labor force as of 2010. 
Labor force is defined as the population aged 15 years and older. GDP 
and physical capital stock are sourced from Penn World Table Version 
9.0 (Feenstra et al., 2015), and are expressed in purchasing power parity 
(PPP) units to account for exchange rate biases. GDP composition by 
sector and labor force is mainly sourced from the World Bank’s World 
Development Indicators data, where some countries’ data are com-
plemented by the CIA World Fact Book (Central Intelligence Agency). 
Figs. 1–4 illustrate the geographical distribution of GDP, capital stock, 
agriculture to GDP share, and labor force, respectively. 

Second, nighttime lights imagery is used to spatially distribute the 
commercial/industrial economic activities and physical capital stock to 
grid cells. Defense Meteorological Satellite Program Operational Line-
scan System (DMSP OLS) nighttime lights imagery was obtained from 
the US National Geographical Data Center (NDGC) of the National 
Oceanic and Atmospheric Administration (NOAA). DMSP OLS has the 
unique ability to capture weak light imaging at night worldwide with a 
spatial resolution of 30 arc-seconds (approximately equal to 0.86 sq. 
kms at the equator). The data are produced from a series of cloud-free 
nighttime light observations for a unit time period with ephemeral 
lights, such as fires removed from the observation. However, the biggest 
problem with DMSP OLS stable lights imagery is that the recorded 
nighttime lights are saturated in the bright cores of city centers and 
other lit areas because of its six-bit quantization (0–63 digital number), 
which limits the dynamic range. To overcome this, NOAA NDGC 
developed a product with no sensor saturation by combining three 
different images collected at different fixed grain settings. Fig. 5 illus-
trates the worldwide geographical distribution of nighttime lights with 
calibrated radiance. We assume that the nighttime lights imagery of 
2010 is represented by the average observations from January 11 to 
December 9, 2010. 

Third, the LandScan Global Population Database of 2010 is used to 
spatially distribute agricultural economic activity and labor population 
to grid cells. The data were obtained from the Oak Ridge National 
Laboratory of the US Department of Defense. LandScan, initially 
developed for the purpose of estimating the ambient population at 
natural disaster risk, is a global population distribution database with a 
spatial resolution of 30 arc-seconds and represents the ambient popu-
lation. That is, it provides a population estimation of not only where 
people sleep but also of the movement of people for work and travel 
during the day. It uses a dasymetric spatial modeling approach that 
distributes the best available census counts to grid cells based on like-
lihood coefficients estimated from road proximity, slope, land cover, 
and nighttime lights (Dobson et al., 2000). Fig. 6 illustrates the world-
wide geographical distribution of the LandScan Global Population. 

Fourth, the Global Roads Open Access Data Set (gROADS) version 1, 
obtained from the National Aeronautics and Space Administration’s 
(NASA) Socioeconomic Data and Applications Center, hosted by the 
Center for International Earth Science Information Network at Columbia 
University, was used for the global road dataset. The gROADS database 
represents a complete and updated dataset of road infrastructure on a 
global scale, combining the best available public road data by country. 
All road networks have been joined topologically at the borders into the 
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global road coverage. Fig. 7 illustrates the worldwide geographical 
distribution of roads in this database. This database highlights long- 
distance road networks between settlements. Its availability in the 
public domain allows for various global studies, particularly in envi-
ronmental research, where the potential impact of road investment on 
the natural environment is assessed (Laurence et al., 2014; Venter et al., 
2016; Strano et al., 2017). However, this dataset has several short-
comings. First, the roads in the gROADS database are classified into 
highway, primary, secondary, tertiary, local/urban, trail, private, and 
unspecified, but the classification is inconsistent across countries 
(Nelson et al., 2006). Additionally, qualitative attributes, such as car-
riageways, surface type, and surface conditions, are available for only a 
few roads. Second, as the road data are compiled from multiple sources, 

such as vector map level 0, the timing of data collection varies from the 
1980s to 2010 across countries. This means that the quality of road data 
also varies significantly across nations, while short and unofficial roads 
are not included. Given the rapid growth of road construction in many 
regions in recent years, this database highly underestimates the actual 
extent of the global road network. Although road types, such as high-
ways, motorways, or rural roads could affect economic performance, it is 
not considered in this study because poor consistency in road classifi-
cation and limited data availability do not enable us to analyze it with 
sufficient quality. 

Finally, two geographical variables, surface roughness and distance 
from the nearest coast, are introduced to instrument the road infra-
structure. GTOPO30, a global digital elevation model with a spatial 

Table 1 
Data sources in dataset development.  

Name Acquisition 
Year 

Source Data Type Spatial 
Resolution 

Format/Pixel 
Type and 
Depth 

Spatial 
Reference 

Spatial 
Coverage 

Socio-economic statistical data 
GDP 2010* Feenstra et al. (2015) GDP (mn. US$) 2011 data National scale – – Global 
Physical capital stock 2010* Feenstra et al. (2015) Physical capital stock 

(mn. US$) 2011 data 
National scale – – Global 

GDP composition by 
sector 

2010* The World Bank/CIA Structure of GDP by 
sector (%) 

National scale – – Global 

Labor force 2010* The World Bank/CIA Labor force (labor 
population count) data 

National scale – – Global 

Raster and Vector data 
Nighttime light imagery 2010 US NOAA National Geophysical 

Data Center 
Radiance calibrated 
nightlights intensity, 
continuous raster 

30-arc seconds Geo-tiff/flt32 WGS 1984 Global 

Global population 
database 

2010 Oak Ridge National Laboratory Global population count, 
continuous raster 

30-arc seconds Geo-tiff/flt32 WGS 1984 Global 

Global roads database 1980–2010 Center for International Earth 
Science Information Network 

Global deployed road 
map, categorical vector 

Computable to 
30-arc seconds 

GDB database WGS 1984 Global 

Geographical data (Instrumental Variables) 
Surface roughness 

(Standard deviation of 
elevation) 

1996 US Geological Survey’s Center 
for Earth Resources Observation 
and Science 

Global digital elevation 
model, continuous raster 

30-arc seconds – WGS 1984 Global 

Coastal Distance 2009 NASA’s Ocean Biology 
Processing Group 

Distance from the nearest 
coast, continuous raster 

0.04-degree Geo-tiff/flt32 WGS 1984 Global 

Note 1: *For some countries, data acquisition years are different from 2010 due to data availability. 
Note 2: GDP—Gross Domestic Product; NOAA—National Oceanic and Atmospheric Administration; CIA—Central Intelligence Agency; GDB—Geodatabase in ArcGIS 
Pro 2.2.3; WGS, World Geodetic System; NASA, National Aeronautics and Space Administration. 

Fig. 1. Worldwide geographical distribution of GDP  
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resolution of 30 arcseconds, developed by the United States Geological 
Survey, was used to compute the standard deviation of elevation from 
the slope. A global dataset of distances from the nearest coastline, with a 
spatial resolution of 0.04-degree, was obtained from NASA’s Ocean 
Biology Processing Group. 

3.2.2. Dataset development 
We estimate the private output data at the grid-cell level, using 

national-level data and the intensity of DMSP OLS nighttime light im-
agery as a proxy for economic statistics at various geographical scales 
under the assumption that all consumption and investment activities in 
the night require lighting. Many studies have applied a similar approach, 
including Elvidge et al. (1997), Sutton and Costanza (2002), Sutton et al. 
(2007), Henderson et al. (2012), and Bundervoet et al. (2015). Doll et al. 
(2000) created the first global disaggregated GDP map at 1.0-degree 
spatial resolution based on a log-linear relationship between lit urban 
areas and official PPP converted GDP using a composite stable light 
image for 1994–95. They also acknowledged that the use of radiance 

calibrated nighttime lights imagery and the consideration of agricultural 
economy are important for better results. Hence, Doll et al. (2006) 
investigated the relationship between radiance calibrated nighttime 
lights and regional GDP in European countries and the United States and 
found that radiance calibrated nighttime lights are a good proxy for 
regional GDP, where industry and service sectors comprise over 90% of 
the economy. As pointed out by several researchers, such as Keola et al. 
(2015), nighttime lights have a weaker linkage with non-illuminated 
sectors, particularly the agricultural sector. For example, Africa is the 
world’s most dimly lit area since a significant share of its GDP originates 
from unlit agriculture. To overcome this, Ghosh et al. (2010) proposed a 
method that accounts for non-lit agricultural GDP by the grid population 
data from LandScan, under the assumption that agriculture does not 
emit any observable nighttime lights. We follow Ghosh et al. (2010) and 
compute grid-based GDP under the assumption that the economic ac-
tivities attributed to the agricultural sector are proportionally distrib-
uted in the LandScan global population, while those attributed to the 
nonagricultural sectors are proportionally distributed in the radiance 

Fig. 2. Worldwide geographical distribution of capital stock.  

Fig. 3. Worldwide geographical distribution of agriculture to GDP share (%).  
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calibrated nighttime lights sum. This is formulated as: 

Yi =AGDPci ×
Pi

∑
j∈ci

Pj
+ NAGDPci ×

NLi
∑

j∈ci
NLj

(8)  

where Yi denotes the private output at grid cell i; AGDPci denotes the 
GDP of the agricultural sector of the country ci to which grid-cell i be-
longs, Pi denotes the LandScan global population at grid cell i, NAGDPci 

denotes the GDP of the nonagricultural sector of country,ci and NLi 
denotes the radiance calibrated nighttime lights sum at grid cell i. 

Physical capital stock data are also estimated at the grid-cell level, 
using national-level data and nighttime lights imagery as a proxy. The 
rationale behind the use of nighttime lights is that the sources of man- 
made illumination are associated with physical capital stock, such as 
offices, retail shopping areas, factories, residences, and street lighting. 
These sources can be classified into several types of physical capital, 
such as buildings, infrastructure, and vehicles. Recent studies support 
this assumption, indicating a positive association between physical 

capital stock and nighttime lights imagery, as shown by Addison and 
Stewart (2015). Moreover, remote sensing data enables the disaggre-
gation of data at a substantially higher degree of spatial resolution than 
traditional data. For these reasons, the national-level capital stock is 
disaggregated using nighttime lights imagery as a proxy, as shown 
below: 

Ki =Kci ×
NLi

∑
j∈ci

NLj
(9)  

where Ki is the capital stock at grid-cell i, and Kci is the capital stock of 
country ci to which the grid-cell i belongs. 

Labor force is estimated at the grid-cell level using the LandScan 
global population database under the assumption that the ratio of labor 
population to total population is constant in each country for simplicity. 
This is expressed as: 

Fig. 4. Worldwide geographical distribution of labor force.  

Fig. 5. Radiance calibrated nighttime light imagery.  
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Li = Lci ×
Pi

∑
j∈ci

Pj
(10)  

where Li is the labor population at grid-cell i, and Lci is the labor pop-
ulation of country to which the grid-cell i belongs. 

Finally, road infrastructure at the grid-cell level is represented by the 
total length of roads in each grid cell, which is computed using ArcGIS 
Pro 2.2.3 with a latitude and longitude coordinate system. 

The proposed method assumes that population and nighttime lights 
sum are used for estimating both input and output factors. Although 
there could be an endogeneity effect, factors other than population and 
nighttime lights, such as national-level share of GDP from the agricul-
tural sector and national-level labor population/capital stock could also 
affect the estimation; hence, we expect the endogeneity effect to be 
negligible. However, our method is so heuristic that its validity is un-
clear. Hence, we tested the reproducibility of our dataset estimated 
using the above method with an available exogenous dataset. Table 2 
summarizes the correlation coefficients of the estimated data from the 
above process that are aggregated into administrative units with the 
official statistical data of the same administrative units for six countries 
where the official statistical data is available at the sub-national level. 
This shows that the estimated results reproduce the official statistical 
data in administrative units quite well. 

4. Results 

4.1. Preparation for model estimation 

First, we examine the areal unit of analysis, which is called the 
modifiable areal unit problem (MAUP), since levels of aggregation in 
grid cells could significantly influence empirical results (Openshaw, 
1984). MAUP typically deals with two aspects of areal unit problems: 
one is a scale effect, showing analytical differences depending on the 
size of units used and the other is an aggregation effect, showing dif-
ferences depending on how the study area is divided. The scale effect 
could matter in our study because the spatial resolution of regular lattice 
grids can be arbitrarily changed from 0.1-degree to a coarser resolution. 
We decided to conduct the model estimations using an areal unit of 
1.0-degree in latitude and longitude mainly because data reproducibility 
cannot be guaranteed if the areal units have too high or too low 
geographical resolution. For instance, because the dataset contains 
many areas without economic activities, if the grid scale is too small, the 
model estimates could be seriously biased. Additionally, a larger spatial 
dataset requires more computation time, which could constrain the 
flexibility of our analysis in practice, although it is technically 
computable. Meanwhile, if the grid scale is too large, spatial spillover 
effects will rarely be observed because most road users do not travel 

Fig. 6. LandScan population grid.  

Fig. 7. Global roads open access data set.  
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across the borders of grids. We also believe that the areal unit should be 
comparable with the regional scale because it enables us to compare the 
estimates with previous empirical studies on road productivity at the 
regional/national scale. As for the aggregation effect, we apply a grid 
pattern for simplicity, although other types of geographical space could 
be applicable. Examination of the aggregation effect is one of the issues 
for further study. 

Next, we specify the spatial weight matrix for the spatial models. 
Previous studies on spatial productivity effects of road infrastructure 
have applied the spatial weight matrix in different ways. Various ways to 
specify the weight matrix have been proposed. For instance, Holtz-Eakin 
and Schwartz (1995) assume three kinds of weight matrices: (1) the total 
sum of neighboring regions’ roads, (2) average of neighboring regions’ 
roads, and (3) weighted average of neighboring regions’ roads, where 
the weights are inversely proportional to the area of the neighboring 
regions. Another method employs physical contiguity with binary 
weights and assigns a weight of 1 to regions sharing a border and 
0 otherwise (Cohen, 2010; Tong et al., 2013; Yu et al., 2013). Alterna-
tively, inverted distance and trade-flow-based weight matrices have also 
been specified (Arbués et al., 2015; Álvarez et al., 2016). We use a 
row-normalized first-order binary contiguity matrix for two reasons. 
First, it enables us to reflect the direct physical connectivity between the 
grids. This could be critical in the context of road infrastructure because 
regions isolated by oceans are expected to have poorer spillover effects. 
Second, the first-order contiguity-based weight matrix has been empir-
ically demonstrated to be better than the inverse distance weight 
matrices (Stakhovych and Bijmolt, 2009). It should be noted that the 
choice of weight matrix is still the biggest issue in spatial econometric 
models, although the estimates could be very sensitive to the matrix, and 
there is no consensus regarding which weight matrix is the best for 
analysis (Anselin, 1988; LeSage and Pace, 2014). 

Then, we define the geographical scope of our empirical analysis. We 
first exclude the regions where no labor force is observed from our 
analysis because no production can be expected without people. We also 
ignore isolated grids that have no adjacent neighboring grid, mainly due 
to the technical difficulties in defining the spatial weight matrix. Finally, 
we use 14,565 grids in our empirical analysis. 

Table 3 summarizes the descriptive statistics of our dataset and the 
scatter plot matrix between each statistic. It shows that the dataset in-
cludes zero values for physical capital stock and road length. Of the 
14,565 grids in total, there are zero values for capital stock and road 
infrastructure in 3560 grids and 1816 grids, respectively, while 1235 
grids have zero values for both. In theory, production activities without 
physical capital stock and/or road infrastructure are unrealistic. One of 
the potential reasons for zero observations of capital stock in some grids 
is that the Penn World Table covers only produced capital while 
excluding natural capital, such as crops and subsoils. For zero observa-
tions of road infrastructure, the global road database covers only long- 

distance roads, excluding short-distance streets. Figs. 8 and 9 illustrate 
the worldwide geographical distribution of zero-level capital stock and 
road infrastructure, respectively. 

Several studies have addressed the solutions for this zero-value issue. 
The first is resampling proposed by Moss (2000), where all zero values 
are bootstrapped or substituted with 0.1, 0.01, and 0.001. Moss (2000) 
then investigated the accuracy of the estimated Cobb–Douglas produc-
tion function and suggested using a substitution approach. The second is 
the Box–Cox transformation (Box and Cox, 1964). One of the most 
well-known methods is to add a particular value to all observations of 
the independent variable with a value of 0. However, there is no 
guideline regarding the appropriate method for Box-Cox transformation. 
The third example is a dummy variable method in which one explana-
tory variable has zero input level (Battase, 1997) and a modified 
Cobb–Douglas production function that can be specified as follows: 

lnYi = β0 + (α0 − β0)Di + β1lnX*
i + εi (11)  

where Di = 1 if Xi = 0 and Di = 0 if Xi > 0; and X*
i = Max (Xi,Di). We 

decided to use the third approach after examining all three, because we 
found that the first and second approaches should lead to significantly 
biased estimates, depending on the initial input values after our many 
trials and errors in estimations. 

4.2. Estimation results 

Table 4 summarizes the results of the models estimated using OLS, 
SEM, SLM, and SDM. These models are estimated with maximum like-
lihood method, using the Chebyshev approximation method for 
computing the Jacobian in the spatial models (Ord, 1975; Pace and 
LeSage, 2004). First, the estimates of the OLS model show that the 
estimated output elasticity of road infrastructure is statistically insig-
nificant. Moran’s I statistics (Moran, 1950) show that it has positive and 
significant spatial autocorrelations among the OLS regression residuals. 
Moran’s I takes the value of 0.355, which suggests that there is a strong 

Table 2 
Reproducibility of estimated data for empirical analysis.  

Country Variables Correlation coefficient Administrative  
Units 

Sources of official statistical data 

Cambodia Output 0.8967 22 Institute of Developing Economies,  
Japan External Trade Organization 

China Output 0.9208 31 China Statistical Yearbook 2011 
Capital 0.8822 
Labor 0.9963 

Japan Output 0.8961 47 Cabinet office of Japan 
Capital 0.8933 
Labor 0.9970 

Myanmar Output 0.9024 51 Institute of Developing Economies,  
Japan External Trade Organization 

Thailand Output 0.9044 76 Institute of Developing Economies, 
Japan External Trade Organization 

United States Output 0.8227 51 Bureau of Economic Analysis  

Table 3 
Descriptive statistics of global dataset (N = 14,565).  

Variable GDP Physical Capital 
Stock 

Labor 
Force 

Road 
Length 

Unit Million US$ 
(2011) 

Million US$ 
(2011) 

population km 

Mean 5,870.59 19,801.50 219,455.60 564.44 
Standard 

Deviation 
19,266.77 70,416.07 683,068.30 817.07 

Minimum 0.000527 0.000 0.325 0.000 
Maximum 697,082.50 2,621,57 16,262,50 31,616.41  
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positive spatial autocorrelation. This means that the OLS estimates could 
be highly biased. Next, Lagrange multiplier (LM) tests are performed to 
test whether spatial interaction effects should be considered (Burridge, 
1980). Table 4 indicates that both the LM test (Error) and robust LM test 
(Error) reject the null hypothesis of no spatial error, implying the exis-
tence of spatial dependence in the error term. The LM test (Lag) rejects 
the null hypothesis of no spatial lag, while the robust LM tests (Lag) do 
not reject the null hypothesis of no spatial lag. This suggests that the 
spatial models are preferable to the OLS model. 

As suggested from the estimates of OLS, the model fitness repre-
sented by Pseudo-R2, log-likelihood, and Akaike Information Criteria is 
the best in SDM, followed by SEM. Additionally, Table 4 shows that the 
hypothesis that the SDM can be simplified into SEM or SLM is statisti-
cally rejected from the LR tests, which suggests that SDM is preferable to 
any other spatial dependence model. 

The above models do not adequately address the potential endoge-
neity that likely leads to biased results when estimating the impacts of 
road infrastructure. In order to address the potential endogeneity of road 
networks, the instrumental variables (IV) method is employed. Past 
studies used various geographical data for the instrument of road 

infrastructure such as the original plan of routes (Michaels, 2008), his-
torical road networks (e.g. Duranton and Turner, 2012; Holl, 2012; 
2016), least-cost route and Euclidean spanning tree network (Faber, 
2014), and straight distance to the lines connecting major places 
(Banerjee et al., 2012). This study used the standard deviation of 
elevation, and the distance from the nearest coastline. This is because we 
assume that road infrastructure is more developed in plain areas than in 
mountainous ones, and more developed in coastal areas than in 
land-locked ones. Table 5 summarizes the results of the IV models, 
estimated with two-stage least squares (2SLS), IV-SEM, IV-SLM, and 
IV-SDM (see also Table A.1 for the estimation results of first-stage 
regression). First, the estimates of the 2SLS model show that the esti-
mated output elasticity of road infrastructure is positive and statistically 
significant. However, both Moran’s I statistics and LM tests indicate that 
the spatial models are preferable to the 2SLS model. In addition, the 
model fitness represented by the Akaike Information Criteria and the 
results of the LR tests suggest that IV-SDM is preferable to any other 
spatial dependence model. 

The estimates of SDM in Table 4 and those of IV-SDM in Table 5 
indicate that capital stock and labor force are estimated to be 

Fig. 8. Worldwide geographical distribution of zero-level capital stock.  

Fig. 9. Worldwide geographical distribution of zero-level road infrastructure.  
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significantly positive, which is reasonable. Both dummy capital and 
dummy road are estimated to be significantly negative, as expected. The 
estimated spatial auto-regressive coefficient ρ is 0.571 in both models, 
which is statistically significant. Although the spatially lagged regressors 
provide an idea of interactions among regions, the sign and magnitude 
of SDM can be estimated more precisely. The direct effect measures the 
effect on the dependent variable when the independent variable in its 
own grid is altered, which contains its own effects generated in the given 
unit and feedback effects that pass through neighboring units and back 
to their own unit. Meanwhile, the indirect effects measure the effect in 
the dependent variable in neighboring areas when the independent 
variable in one’s own area is altered. Thus, they can be understood as 
spillover effects. In OLS or SEM, the direct effect of an explanatory 

Table 4 
Estimated output elasticities with OLS, SEM, SLM, and SDM.   

OLS SEM SLM SDM 

Intercept − 2.346*** (-51.04) − 2.863*** (-62.01) − 2.197*** (-65.86) − 0.777*** (-15.24) 
Capital 0.523*** (91.36) 0.465*** (85.02) 0.487*** (104.93) 0.434*** (72.33) 
Labor 0.499*** (70.62) 0.607*** (106.36) 0.462*** (111.30) 0.657*** (93.86) 
Road Infrastructure − 0.001 (-0.15) − 0.030*** (-3.58) − 0.002 (-1.46) − 0.036*** (-4.00) 
Dummy Capital − 1.153*** (-35.25) − 1.094*** (-33.98) − 1.187*** (-37.55) − 1.184*** (-35.88) 
Dummy Road − 0.528*** (-9.60) − 0.517*** (-13.09) − 0.494*** (-19.00) − 0.486*** (-11.85) 
λ    0.621*** (77.63)     
ρ      0.081*** (20.25) 0.571*** (71.38) 
W*Capital       − 0.206*** (-22.89) 
W*Labor       − 0.469*** (-52.11) 
W*Road       0.043** (3.07) 
Pseudo R2 0.954  0.965  0.956  0.966  
Log-likelihood − 18985.60  − 17057.53  − 18761.95  − 16848.77  
Akaike Information Criteria 37985.21  34131.05  37539.89  33723.54  
Breusch-Pagan test 1899.9***        
Jarque Bera test 2044.5***        
Moran’s I 0.355***  − 0.06  0.288***  − 0.05  
LM test (Error) 5451.5***        
Robust LM (Error) 4975.7***        
LM test (Lag) 477.31***        
Robust LM (Lag) 1.48        
LR test (SEM)       419.25***  
LR test (SLM)       3826.40***  

Notes: t-statistics are in parentheses; ***: p < 0.01, **: p < 0.05, *: p < 0.1. Robust standard errors are used for taking heteroskedasticity into consideration for OLS. 

Table 5 
Estimated output elasticity with 2SLS, IV-SEM, IV-SLM, and IV-SDM.   

2SLS IV-SEM IV-SLM IV-SDM 

Intercept − 2.557*** (-25.88) − 2.833*** (-47.74) − 1.727*** (-31.65) − 0.784*** (-12.74) 
Capital 0.522*** (117.88) 0.466*** (84.19) 0.483*** (104.10) 0.438*** (70.46) 
Labor 0.477*** (45.09) 0.611*** (82.03) 0.502*** (91.18) 0.674*** (70.84) 
Road Infrastructure 0.074* (2.22) − 0.042** (-2.36) − 0.160*** (-10.92) − 0.090*** (-3.68) 
Dummy Capital − 1.153*** (-35.96) − 1.093*** (-33.88) − 1.193*** (-37.94) − 1.173*** (-35.22) 
Dummy Road − 0.205 (-1.42) − 0.564*** (-8.18) − 1.162*** (-17.38) − 0.660*** (-7.89) 
λ    0.621*** (75.56)     
ρ      0.097*** (24.01) 0.571*** (67.99) 
W*Capital       − 0.210*** (-24.22) 
W*Labor       − 0.487*** (-42.52) 
W*Road       0.101** (3.67) 
Pseudo R2 0.954  0.965  0.956  0.966  
Log-likelihood − 18983.14  − 17061.9  − 18703.54  − 16847.62  
Akaike Information Criteria 37980  34140  37423  33721  
Breusch-Pagan test 1899.5***        
Jarque Bera test 2069.2***        
Moran’s I 0.354***  − 0.06  0.283***  − 0.05  
LM test (Error) 5412.1***        
Robust LM (Error) 4886.9***        
LM test (Lag) 582.65***        
Robust LM (Lag) 3.48*        
LR test (SEM)       438.74***  
LR test (SLM)       3711.80***  
Instruments Surface Roughness and Coastal Distance 

Notes: t-statistics are in parentheses; ***: p < 0.01, **: p < 0.05, *: p < 0.1. Robust standard errors are used to consider the heteroskedasticity for 2SLS. 

Table 6 
Direct, spillover, and total effects of input factors computed from SDM and IV- 
SDM.    

SDM IV-SDM 

Capital Direct 0.439*** (74.51) 0.443*** (75.57) 
Spillover 0.092*** (8.07) 0.088*** (7.70) 
Total 0.531*** (48.86) 0.531*** (48.40) 

Labor Direct 0.644*** (101.63) 0.659*** (73.85) 
Spillover − 0.206*** (-18.06) − 0.224*** (-15.53) 
Total 0.438*** (40.93) 0.435*** (35.34) 

Road Direct − 0.033*** (-3.68) − 0.083*** (-3.57) 
Spillover 0.049** (2.44) 0.108*** (2.90) 
Total 0.016 (0.79) 0.024 (0.75) 

Notes: t-statistics are in parentheses; ***: p < 0.01, **: p < 0.05, *: p < 0.1. 
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variable equals the estimated coefficient of that variable and its spillover 
effect is zero, while in SLM or SDM, the direct and spillover effects 
should be estimated with the scalar summary measures. They can be 
computed with an approximation of the matrix using the traces of the 
powers of the weight matrix. An inference of these measures is drawn 
using Bayesian Markov chain Monte Carlo estimation methods, which 
provide a posterior distribution of the scalar summary measures of 
impact. The inference is obtained from 2000 simulated draws following 
Del Bo and Florio (2012). 

Finally, Table 6 summarizes the direct, spillover, and total effects of 
road infrastructure computed from the estimated SDM and IV-SDM. This 
shows that the direct impact of road infrastructure is significantly 
negative, while the spatial spillover effects are significantly positive, and 
in total, the total output elasticity of road infrastructure is positive but 
insignificant. 

5. Discussion 

Table 7 shows the elasticities of direct, spillover, and total effects 
estimated in earlier studies for comparison. This shows that the elasticity 
of the direct effect of road infrastructure in previous studies varies from 
− 0.058 to 0.912, while that of this study is estimated at − 0.083 to 
− 0.033. Many of them showed positive elasticities, but Holtz-Eakin and 
Schwartz (1995) and Berechman et al. (2006) showed − 0.022 and 
− 0.009, respectively, while some studies, such as Garcia-Mila et al. 
(1996) and Boopen (2006) concluded with insignificant elasticity. Pre-
vious studies show that the elasticity of spillover effect from road 
infrastructure varies from − 0.806 to 0.24, while that of this study varies 
from 0.049 to 0.108. Finally, the elasticity of the total effect from road 
infrastructure shown in previous studies varies from 0.034 to 0.27, and 
from 0.016 to 0.024 for this study. 

The negative direct impact from road infrastructure estimated from 

Table 7 
Elasticities of direct, spillover, and total effects from road infrastructure in previous studies.  

Authors Geographical 
scale 

Period Road infrastructure Model Elasticity of direct 
effect 

Elasticity of spillover 
effect 

Elasticity of total 
effect 

Garcia-Mila 
and McGuire 
(1992) 

US, 48 states 1969–83 Highway capital CD [0.044, 0.045] – – 

Holtz-Eakin 
and 
Schwartz 
(1995) 

US, 48 states 1969–86 Highway capital CD − 0.022 Not Significant – 

Garcia-Mila 
et al. (1996) 

US, 48 states 1970–83 Highway capital CD Not Significant –  

Boarnet (1998) California 
counties 

1969–88 Street and highway 
capital 

CD [0.236, 0.300] [-0.806, 0.125] – 

Canning 
(1999) 

57 countries 1960–90 Paved roads and 
railroads (km) 

CD Not Significant – – 

Canning and 
Bennathan 
(2000) 

67 countries 1960–90 Paved roads (km) Translog Low income nations: 
0.05 
Middle income 
nations: 0.09 
High income nations: 
0.04 

– – 

Cantos et al. 
(2005) 

Spain, 17 regions 1965–95 Road capital CD [Not Significant, 
0.286] 

– – 

Berechman 
et al. (2006) 

US state, county, 
and municipality 
level 

1990–2000 Highway capital CD State: Not significant, 
County: 0.042, 
Municipality: − 0.009 

State: 0.021, County: 
0.022, Municipality: 
0.01 

State: 0.047, County: 
0.045, Municipality: 
Not significant 

Ozbay (2007) US, 18 counties 1990–2000 Street and highway 
capital 

CD [Not Significant, 
0.057] 

[Not Significant, 
− 0.051] 

– 

Boopen (2006) 38 sub-Saharan 
and 13 SIDS 
countries 

1980–2000 Road length (km) CD Not Significant – – 

Moreno and 
López-Bazo 
(2007) 

Spain, 50 
provinces 

1965–97 Transport capital CD [0.039, 0.041] [-0.106, − 0.080] – 

Cohen (2010) US, 48 states 1996 Highway (monetary 
value) 

SLM 0.106 – – 

Del Bo and 
Florio (2012) 

Europe, 262 
regions 

2006 Motorways, other roads 
(physical value) 

SDM Motorways: 0.045; 
Other roads: − 0.058 

Motorways: Not 
significant; Other 
roads: 0.066 

Motorways: 0.034; 
Other roads: Not 
significant 

Tong et al. 
(2013) 

US, 44 states 1981–2004 Road disbursement SDM 1st order contiguity 
matrix: Not 
Significant, Other 
matrices: [0.02, 0.03] 

2nd order contiguity 
matrix: 0.24, Other 
matrices: Not 
significant 

2nd order contiguity 
matrix: 0.27, Other 
matrices: Not 
significant 

Arbues et al. 
(2015) 

Spain, 47 
provinces 

1986–2006 Roads (monetary value) SDM [0.043, 0.070] [0.032, 0.055] [0.080, 0.119] 

Álvarez et al. 
(2016) 

Spain, 47 
provinces 

1980–2007 Roads used in trade 
flows (monetary value) 

SLM & Spatial 
autoregressive 
combined model 

[0.026, 0.042] [0.025, 0.033] [0.051, 0.075] 

Elburz, Z. et al. 
(2017) 

Turkey, 26 
regions 

2004–2011 Road length (km) 
Motorway length (km) 

CD Road: [0.278, 0.912] 
Motorway: [0.058, 
0.226] 

– – 

Barilla, D. et al. 
(2020) 

Italy, 20 regions 2007–2015 Index of cost 
competitiveness for 
transport and 
warehousing sectors 

SDM – – –  
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our study could be caused by the characteristics of our dataset, which 
contains mainly long-distance trunk road infrastructure rather than 
short-distance infrastructure, such as urban roads, streets, and avenues. 
The trunk road infrastructure promotes inter-regional transportation 
flows, which stimulate economic activities in a wider geographical area, 
whereas they suppress economic activities in the area through which the 
inter-regional traffic passes. Such traffic could have negative external 
impacts on the region, such as local environmental effects of noise and 
air pollution, and road accidents. 

Next, the significantly positive spatial spillover effects from road 
infrastructure shown in this study are in line with other spatial pro-
ductivity studies. The construction of an inter-regional road could 
improve the network by connecting regions efficiently, thus leading to 
the redistribution of existing resources for production. An improved 
transportation network can potentially provide a more efficient and 
integrated road network to the region and, consequently, contribute 
positively to the economic activities in its spatially related regions. The 
average positive spillover effects may be suggestive because, as shown 
earlier, some trade literature theoretically indicate the asymmetric ef-
fects of inter-regional transportation infrastructure between periphery 
and metropolitan regions (Fujita et al., 1999; Baldwin et al., 2003; 
Combes et al., 2008). For instance, Faber (2014) empirically investi-
gated the national trunk highway system in China, and concluded that 
large-scale inter-regional transportation infrastructure can lead to a 
reduction in industrial and total output growth among connected pe-
ripheral regions, relative to non-connected ones, rather than diffusing 
production from metropolitan regions to the periphery. If this holds true 
across the world, our findings of average positive spillover effects imply 
that globally, the positive spillover effects in the metropolitan regions 
are more dominant than the negative spillover effects from the periph-
ery. This may be evidence that is consistent with the theory of 
agglomeration economies, as shown in many existing studies (Fujita and 
Thisse, 2002). 

Finally, the total effects from road infrastructure are estimated to be 
positive but insignificant. Theoretically, this is a sum of the direct and 
spillover effects; thus, the positive total effects mean that the positive 
spillover effects are greater than the negative direct effects. However, it 
is estimated to be statistically insignificant, which suggests that the total 
effects from road infrastructure are not observed on a global scale. 

It should be noted that this study assumes a single production 
function covering the world for simplicity, but production technology 
could vary across regions. For instance, Hansen (1965) showed that the 
effect of public capital varies with the characteristics of regions broadly 
categorized as lagging, intermediate, and congested regions. Canning 
and Bennathan (2000) estimated the output elasticity of paved roads for 
67 countries and found an inverted U-shaped relationship between in-
come per capita and elasticities. This suggests that the estimation of 
productivity effects by region should be elaborated with our dataset. 
This is one of our further issues. 

6. Conclusion 

This study makes two major contributions. First, it proposes practical 
methods for developing a 2010 global gridded database, containing 
private output, physical capital stock, labor force, and road infrastruc-
ture stock with a spatial resolution of 0.1-degree. It is estimated using 
national-level statistical data, combined with nighttime lights imagery, 
global population database, and global road network. Their reproduc-
ibility is validated well with officially available statistical data at the 
regional scale. This enables researchers and policymakers to study the 
economic impacts of road infrastructure at different geographical levels. 
Second, using a simple Hicks-neutral Cobb-Douglas production function, 
this study estimates the productivity effects of road infrastructure, 
incorporating spatial spillover effects. It estimated OLS, SEM, SLM, and 
SDM with and without IVs, using the developed gridded global database 
aggregated at 1.0-degree, and empirically showed that SDM and IV-SDM 

outperform other models. Additionally, the estimation results of SDM 
and IV-SDM show that the direct effects of road infrastructure are 
significantly negative and the spatial spillover effects are significantly 
positive, while the overall effects are positive but insignificant. 

Our findings have valuable implications for policymakers. First, the 
insignificant total effect of road infrastructure may suggest that a road is 
not a “silver bullet” (Munnell, 1990a) for improving regional produc-
tivity. However, it should be noted that our analysis mainly covers 
long-distance trunk roads. The effect of road infrastructure could be 
indirectly enhanced by introducing policies related to trunk road 
infrastructure. For instance, the positive spillover effects from the trunk 
road infrastructure may be strengthened by better connecting trunk 
roads with local/regional road networks. This suggests that the inte-
grated investment in local/regional roads and trunk roads could 
enhance the positive spatial spillover effects, improving accessibility in 
first-/last-mile trips to/from the trunk roads. Similarly, the total effect 
may be increased by reducing the negative external effects from trunk 
road infrastructure, thereby minimizing the negative direct effects. This 
may include environmental actions, such as reducing the damage from 
traffic noise and air pollution; change in transportation policies, such as 
enhancing traffic safety; and regional development plans, such as 
introducing strategic land-use planning along the trunk road to capture 
the wider economic impacts from the interregional traffic. Second, our 
results could contribute to the debates on international aid strategies for 
international donor agencies and multilateral development banks. If, as 
discussed earlier, the road infrastructure leads to less spillover effects in 
the periphery than in the metropolitan regions, our findings of average 
positive spillover effects imply that the cross-border corridor projects 
that improve market accessibility to/from remote areas, could enhance 
regional productivity in the metropolitan regions. However, considering 
that they could also worsen the inter-regional disparity between the 
metropolitan and periphery regions, appropriate redistribution policies, 
including those related to international aid, should be introduced to 
compensate for the negative effects of road infrastructure in the pe-
riphery. Finally, our results could also provide a benchmark of road 
productivity effects to local/regional policymakers. Existing studies, 
such as Canning and Bennathan (2000), showed that the productivity 
effects of road infrastructure vary across regions, while our study shows 
the average effects on a global scale. Our findings may enable individual 
local/regional policymakers to use the average effect as a reference for 
their decision-making on road investment, based on the local/regional 
evidence estimated with local/regional data. 

Although this study adds new evidence on the productivity effects of 
road infrastructure using a global dataset, many more issues need to be 
addressed. First, the dataset development should be further elaborated 
to improve data accuracy. We assume that the physical capital stock is in 
proportion to the sum of nighttime light intensity, but in reality, the 
efficiency of consuming man-made resources for economic activities 
could vary across the world. Additionally, the satellite remote sensing 
data, for instance, the DMSP OLS data used in this study, are of insuf-
ficient quality due to their coarse spatial and spectral resolution. Note 
that this has been overcome by the Visible Infrared Imaging Radiometer 
Suite since 2012. Second, this study performs a cross-sectional analysis, 
which cannot examine causality. This is partly due to the availability of 
data for developing the grid-based global dataset. If the global dataset 
for multiple years were available, a quasi-experimental approach, such 
as the difference-in-differences method could be employed to examine 
the causal effects from road infrastructure. Third, the econometric 
modeling should also be more elaborated. Reverse causality may be 
controlled using more sophisticated econometric techniques other than 
the simple IV method, such as the generalized method of moments 
(Kelejian and Prucha, 2004). Misspecification of the models could also 
seriously bias the estimates (Melo et al., 2013). The estimates of a simple 
spatial analysis could show a spurious association of road infrastructure 
with economic output, as pointed out by many studies, such as Ozbay 
et al. (2007). Additionally, spatial econometric modeling is often 
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criticized for its poor theoretical foundation (Schafer and Victor, 2000; 
Corrado and Fingleton, 2012), particularly its assumption of the spatial 
weight matrix, which is one of its weakest issues. The difficulty of 
identifying and measuring spatial spillover phenomena has been 
addressed in many studies (Krugman, 1991; Álvarez et al., 2016). 
Ideally, more heuristic knowledge of the spatial linkage of road infra-
structure networks across regions could enable a better formulation of 
the weight matrix. 
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Appendix 

Table A.1 summarizes the estimation results of first-stage regression of IV models. The IV models were estimated (the results are presented in 
Table 5), using the road infrastructure that was obtained from the estimated results of first-stage regression. This regresses the road infrastructure on 
geographical attributes of the Surface Roughness and the Coastal Distance with all the control variables. The results show that both geographical 
attributes are significantly correlated to the road network. They also indicate the F-statistic is high and well above the commonly suggested threshold 
to be considered a relevant instrument, demonstrating that weak-instrument bias is not a problem.  

Table A.1 
Estimation Results of First-Stage Regression of IV models  

Dependent variable: ln (Road) 

Intercept 1.649*** (21.99) 
ln (Capital) 0.034*** (7.02) 
ln (Labor) 0.278*** (59.84) 
Dummy Capital 0.041 (1.11) 
Dummy Road − 4.199*** (-138.59) 
ln (Surface Roughness) 0.075*** (16.09) 
ln (Coastal Distance) 0.145*** (14.26) 
R2 0.836 
Log-likelihood − 19831.03 
Akaike Information Criteria 39678.05 
F-Statistic 16570 

Notes: t-statistics based on the robust standard errors are in parentheses. ***: p <
0.01, **: p < 0.05, *: p < 0.1. 
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