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• Long-term planning in human-wildlife
conflict benefits conservation and human
safety.

• We proposed a framework to assess HEC
risk under climate change and human
pressure.

• A spatial shift in HEC risk toward higher
latitude and altitude was projected.

• HEC vulnerability was predicted to in-
crease from drought, despite less exposed
humans.

• Lower habitat quality was predicted to
alter HEC hazard where most elephants
occur.
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 As natural resources decrease, competition between humans and large endangered wildlife increases, hindering the
sustainability of animal conservation and human development. Despite the multi-dimensional nature of such interac-
tions, proactive assessments that consider both the biosphere and anthroposphere remain limited. In this study, we
proposed a human elephant conflict risk assessment framework and analyzed the spatial distribution of risk at the
baseline (2000–2019) and in the near future (2025–2044) for Thailand, so that it may address the multifaceted char-
acteristics and impending effects of climate change. Future scenarios were based on the combination of RCP45/SSP2
or RCP85/SSP5 and spatial policy, with or without elephant buffer zones. The composite risk index, comprised of haz-
ard, exposure, and vulnerability, was constructed using the geometric mean, and validation was performed with the
area under the curve (AUC). Our results projected a shift with increasing future risk toward higher latitudes and alti-
tudes. Increasing future risk (average +1.7% to +7.4%) in the four forest complexes (FCs) in northwestern regions
was a result of higher hazard and vulnerability from more favorable habitat conditions and increasing drought prob-
ability, respectively. Reduction in future risk (average−3.1% to−57.9%) in other FCs in lower regions was mainly
due to decreasing hazard because of decreasing habitat suitability. Our results also highlight geographically explicit
strategies to support long-term planning of conservation resources. Areas with increasing future risk are currently fac-
ing low conflict; hence it is recommended that future strategies should enhance adaptive capacity and coexistence
awareness. Conversely, areas with lowering future risk from a decrease in habitat quality are recommended to identify
buffer strategies around protected areas to support existing large elephant populations.
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1. Introduction

Human-wildlife conflict (HWC) occurs when the behaviors of wildlife
and humans negatively affect one another. Such negative interactions are
2
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common where agriculture and natural landscapes intersect, especially
near protected areas. HWCs occur when wildlife damage crops, kill live-
stock, and cause harm to humans, or when humans encroach on wildlife
habitats. Threats related to wildlife are perceived as small yet frequent
events and are commonly neglected in risk assessment and subsequent
management policies (Gaillard et al., 2019). Nevertheless, they usually ac-
cumulate and erode society's ability to handle hazardous incidents and
achieve sustainable development (UNISDR, 2015).

Although species of varying sizes are found to have conflict with
humans, large body-sized endangered species are disproportionately
concerning (Dickman, 2010). The Asian elephant (Elephas maximus) is the
largest terrestrial herbivore in Asia and is a subject to conflict with humans,
known as the human-elephant conflict (HEC) (IUCN, 2017). The HEC
mechanism was driven by multiple reciprocal factors. Physiological re-
quirements for daily energy intake caused Asian elephants to forage over
large areas with home ranges varying from less than 100 km2 to 800 km2

(Alfred et al., 2012; Sukumar, 2003), while heterogeneous habitat pref-
erences led them near the forest edges (Wadey et al., 2018). In recent
decades, an increase in human population and socioeconomic pressures
have fueled the demand for agricultural land, which has led to pervasive
forest conversion and encroachment into elephant habitats (Crist et al.,
2017; Nyhus, 2016). Degraded and fragmented habitats among agricul-
tural matrices cause elephant's ranging pattern to become overlap
with agricultural activities, resulting in increasing HEC. The spatial
configuration of available resources, especially mature crops adjacent
to natural habitats, can also attract elephants (Artelle et al., 2016;
Branco et al., 2019). In HEC-prone areas, human perception and
tolerance of wild elephants can lead to an array of behaviors ranging
from poaching and retaliatory killing to acceptance (Bruskotter and
Wilson, 2014; Kansky et al., 2014).

Although land conversion is currently the leading cause of biodiversity
deterioration, climate change is projected to become the dominant driver
(IPBES, 2019). Climate change is expected to shift suitable species ranges,
alter physical tolerance, and cause phenological asynchrony between ani-
mals and their food sources (Bellard et al., 2012). Consequently, as climate
change exacerbates human-elephant competition for scarce resources and
suitable habitats, HEC is expected to intensify (Abrahms, 2021;
Shaffer et al., 2019). This is particularly relevant during dry and
drought periods (Chan et al., 2022; Kitratporn and Takeuchi, 2019).
Moreover, as future economic growth and drought intensification are
projected, countries with Asian elephants are likely to face the coupling
effects of anthropogenic pressures and climate change. As rural liveli-
hood depends on agriculture activities, deforestation from agriculture
expansion within the Southeast Asia intact forest would continue with
an estimated 5.2 mha forest cover loss in 2050 under the worst-case sce-
nario (Estoque et al., 2019). Increasing future drought due to drying soil
moisture and reduced precipitation were predicted using ensemble
models within the region (Dai, 2013). Hence, the simultaneous consid-
eration of future climate and land change is important, as emphasized
by Foden et al. (2019) and Titeux et al. (2016).

A flexible framework is necessary to allow the long-term countrywide
evaluation of HEC that incorporates multidimensional future projections.
Risk assessment is common in disaster and climate change risk analyses,
and is essential for making informed decisions. A risk assessment frame-
work in which risk is expressed as a function of hazard, exposure, and vul-
nerability was employed in the United Nations Office for Disaster Risk
Reduction (UNISDR) guidelines (UNISDR, 2015), the Intergovernmen-
tal Panel on Climate Change (IPCC) Special Report (IPCC, 2012), and
the IPCC Fifth Assessment Report (IPCC, 2014). This risk framework
also incorporates scenario planning, which allows decision makers to
explore plausible futures and develop relevant long-term actions
(Mahmoud et al., 2009).

By framing HEC similarly to a disaster event, we demonstrated the
application of a risk framework with climate change scenarios to estimate
the spatial distribution of HEC risk at the baseline (2000–2019) and in
the near future (2025–2044) in Thailand. Our study addressed the impacts
2

of climate change on HEC by incorporating future projections from the
climatic domain (temperature and precipitation), the socioeconomic
domain (human population and gross domestic product), and the combined
effects on land cover.

2. Materials and methods

2.1. Study area

Thailand has approximately 3000–4000 wild elephants, of which large
populations are concentrated in terrestrial forest complexes (FC) located in
the western and eastern regions (Fig. 1). The country faced significant de-
forestation due to the 1970s timber demand, the government-led policy
to allow settlement in unoccupied land, and the expansion of commercial
agriculture (ICEM, 2003). Nowadays 56% of the country's area was used
for agriculture to grow rice, sugarcane, cassava, maize, rubber, and oil
palm as major crops, while forest, urban, water, and other land types cov-
ered around 33%, 6%, 3%, and 3%, respectively (LDD, 2016). Thailand
has a population of almost 70 million people, with nearly half of the popu-
lation remaining in rural areas and still involved in the agriculture sector
(World Bank, 2020). Despite a slow annual population growth, which fell
from 3% in the 1970s to 0.5% in the 2010s, urban and agriculture expan-
sion continued (World Bank, 2020). Consequently, wild elephants in
Thailand occurred in fragmented and degraded habitats (IUCN, 2017;
Leimgruber et al., 2003). Although Thai elephants do not have long dis-
tance migration, they were observed to disperse into the surrounding agri-
culture land, eating crops and accessing human-made water points (Htet
et al., 2021; van de Water and Matteson, 2018). During the HEC, house-
holds in some areas spent an average of 212 nights annually guarding
crops against elephant-raiding, and the HEC-induced cost was significant
compared to the average household income (Jarungrattanapong et al.,
2017). Climate change will likely affect potential crop yield and increase
extreme events for floods and drought in the country (Kiguchi et al.,
2021). These variations in climatic patterns coupled with the demand for
production land, urbanization, and depopulation trend likely influences
the future HEC.

2.2. Risk framework and future scenarios

The proposed HEC risk framework is illustrated in Fig. 2. HEC risk
was defined as wild elephant occurrence (hazard) in areas overlapping
with the rural human population (exposure) who possess various
vulnerable conditions (vulnerability). We first prepared the underlying
climatic and landscape data relevant to the HEC for the baseline and
future scenarios. The attributes of the risk components, including haz-
ard, exposure, and vulnerability sub-indicators, were then calculated.
Finally, the composite risk index was computed using the geometric
mean with equal weighting.

Climate change scenarios combining representative concentration
pathways (RCPs) and shared socioeconomic pathways (SSPs) provide
projections of climate radiative forcing and the relevant underlying
socioeconomic factors (van Vuuren et al., 2014). The RCP/SSP scenarios
have benefited research communities in a wide range of topics (O’Neill
et al., 2020). RCP45/SSP2 assumed a slow reduction of emissions corre-
sponding to government efforts proposed for the Paris Agreement, while
RCP85/SSP5 assumed high development in economic and human capital
with a strong reliance on fossil fuels (O’Neill et al., 2017; van Vuuren
et al., 2014). Combining RCP45/SSP2 and RCP85/SSP5, hereafter
environmental-focus and development-focus, respectively, with the HEC
spatial policy of the 12 km buffer zone around protected areas with
known elephant populations, four future scenarios were evaluated
(Table 1). The 12 km distance was chosen based on the observation of ele-
phants' movement outside of the Khao Yai-Dong Phayayen FC as reported
by park rangers. The colour code associated with each of the four scenarios
represents the range from the most to the least environmentally and
elephant-friendly pathways.



Fig. 1.Map of the study area. a.Distribution of the terrestrial forest complex (FC) and estimated number of wild elephant populations within each protected area in Thailand.
b. Thailand's land cover at the baseline period.
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2.3. Dataset and pre-processing

Since climate influences processes on a large scale and the climatic
niche of the species might be inadequately captured whenmodeling within
small spatial extents (Fournier et al., 2017; Sirami et al., 2017), we applied
Fig. 2. Diagram illustrating the HEC risk framework. Boxes with red-borders
highlight sub-indicators that were simulated in this study, while gray boxes
indicate sub-indicators that were obtained from ancillary data.
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two scales of analysis. Regional coverage across all 13 countries was consid-
ered when modeling climatic suitability, whereas areas within the bound-
ary of Thailand were considered when modeling landscape suitability for
elephant distribution. Various data layers were used to represent the risk
components with different spatial units based on data availability
(Table S1). For the final analysis, all data were resampled to 500 m spatial
resolution using bilinear interpolation to provide consistencywith the land-
cover map. Data processing was done using R version 4.0.2 with the
“raster,” “rgeos,” and “sf” packages for raster/geospatial data processing
and “stats” package for the statistical analysis. Satellite imagery for land
cover classificationwas preprocessed and classified using the random forest
algorithm on the Google Earth Engine platform (Gorelick et al., 2017). The
future land-cover projection map was computed using the CLUE-S model
(Verburg et al., 2002).

2.3.1. Climatic data
Theminimumandmaximum temperatures, and precipitation data from

the ECMWF ERA5 reanalysis product and NASA Earth Exchange Global
Daily Downscaled Projections (NEX-GDDP) Coupled Model Intercompari-
son Project Phase 5 (CMIP5) product were used for the baseline and near
future scenarios, respectively. ERA5 showed consistent improvements
over its predecessors (Hersbach et al., 2020), while NEX-GDDP provided
higher resolution and accuracy than the original global climate models
Table 1
Four future scenarios evaluated in this study with the colour-coded naming which
ranges from the most to the least environmental and elephant-friendly pathways:
environmental-focus with buffer-zones (Green Future), environmental-focus with-
out buffer-zones (Yellow Future), developmental-focus with buffer-zones (Orange
Future), and developmental-focus without buffer-zones (Red Future).

Climate change HEC spatial policy Scenario

Environmental focus
(RCP45/SSP2)

Developmental focus
(RCP85/SSP5)

Buffer zones

x x Green Future
x Yellow Future

x x Orange Future
x Red Future
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(GCMs) (Thrasher et al., 2012). Five GCMs, CanESM2, CESM1-BGC, IPSL-
CM5A-MR, MIROC5, and MPI-ESM-MR, were chosen to represent the
ranges of potential future climatic conditions, following the guidelines of
Sanderson et al. (2015).

Climatic data were used to calculate bioclimatic variables and drought
indicators. Bioclimatic variables provide biologically meaningful indices
that are commonly used in ecological modeling (Hijmans et al., 2005).
Drought indicators were derived from the Keetch-Byram Drought Index
(KBDI) (Keetch and Byram, 1968), which reflects the net effect of evapo-
transpiration and precipitation in producing cumulative moisture defi-
ciency in the deep duff and upper soil layers. Bioclimatic variables were
calculated for the study period, while the KBDI was calculated at daily
time steps:

KBDI ¼ KBDIt−1 þ 800 − KBDIt−1
� �

0:968e 0:0486�Tmaxð Þ − 8:3
� �� 10−3

1þ 10:88e −0:0441�Prannualð Þ − 100� Prð Þ
(1)

where KBDIt−1 is the previous day's KBDI; Tmax is the daily maximum tem-
perature; Pr is the daily precipitation; and Prannual is the average annual pre-
cipitation. Drought day (Dday) was identified when the standard anomaly of
KBDI, KBDI−μσ was over 1.5, while drought event (Devent) was defined as when
at least seven consecutive Dday were measured. The drought intensity (2)
and frequency (3) for the baseline and future periods were then calculated,
where KBDIDday and dayDday refer to the value of KBDI and the number of
days identified as Dday.

Drought Intensity ¼ ∑KBDIDday
∑dayDday

(2)

Drought Frequency ¼ ∑Devent (3)

We assessed the accuracy of the chosen climatic dataset with observa-
tions from Thai weather stations (Table S2) and compared our KBDI results
with existing products (Fig. S1).

2.3.2. Landscape data
The landscape dataset comprised landscape features and land cover

classes. The landscape features included topography, accessibility to
water, and human disturbance, which were represented by the terrain
roughness index (TRI) calculated using the Shuttle Radar Topography
Mission (SRTM) (USGS, 2004); the Euclidean distance to rivers and water
points were calculated using HydroSHED (Grill et al., 2019) and the
European Commission Joint Research Centre (JRC) yearly water classifica-
tion version 1.2 (Pekel et al., 2016); and the Euclidean distance to transport
networks was calculated using GRIP4 (Meijer et al., 2018) and Thai Rail-
way. These landscape features were assumed to be static.

For land cover, five classes were selected following the Thailand Land
Development Department (LDD) definition (Table S3): abandoned, crops,
plantations, forest, built-up, and water. The baseline land cover was classi-
fied using remotely sensed satellite images available during 2014–2016.
The data sources, spectral reflectance and indices, and classification
methods are described in Supplementary Note 1. The resulting land cover
achieved an overall accuracy of 0.89 and a Kappa value of 0.83
(Table S4). To simulate future land cover, land demand and spatial alloca-
tion were required. For the land demand projection, the following assump-
tions were made: the water areas were assumed to remain constant from
the 2015 baseline to the future. The built-up cover for 2040 was based on
Gao and O’Neill (2020). Forest areas were assumed to gradually increase
based on the recent trend (2010–2019) of increasing protected areas in
Thailand and the National Forestry Strategy, which aimed for 40% forest
cover (RFD, 2017). Land demand for crops and plantations was assumed
to be a function of production demand and yield (Alexandratos and
Bruinsma, 2012; Stehfest et al., 2019). After obtaining the land demand,
the CLUE-S model was employed to perform spatially explicit allocation
under future scenarios (see Supplementary Note 1). The performance was
4

assessed by comparing the simulated land cover map in 2015 with the
land cover classification result, which showed an 81% agreement. The
model was then applied to simulate four future land cover maps (Fig. S2).

2.3.3. Asian elephant data
Asian elephant presence data were used under the hazard component as

an input for the species distribution modeling (SDM) technique, in which
the location of known species presence is used to fit the statistical relation-
ship with ecologically relevant environmental layers, and its output pro-
vides a relative probability ranging from 0 (no chance of presence) to 1
(high relative probability of presence). Two sets of locations were used.
For the climatic suitability model, elephant presence was obtained from
the Global Biodiversity Information Facility (GBIF) and the existing litera-
ture (Bi et al., 2016; Naha et al., 2019; Sampson et al., 2019). The
(derived GBIF dataset 2022) with low-accuracy coordinates, unsuitable
data sources, and dates before 1995 were removed. For the landscape
suitability model, elephant presence was digitized from the Department
of Thailand National Parks,Wildlife, and Plant Conservation (DNP). Spatial
filtering was applied to reduce potential autocorrelation among the pres-
ence points (Fourcade et al., 2014). A total of 328 and 3018 presences
were used for climatic and landscape modeling, respectively.

2.4. Hazard modeling and projection

A hazard refers to the potential occurrence of events that may cause
harm (IPCC, 2014). Here, hazard was represented by the probability of
wild elephant presence, which was governed by habitat suitability and
whether the locations were reachable by the species. Three sub-indicators
were selected: climatic suitability, landscape suitability, and elephant dis-
persal probability from protected areas. The two suitability sub-indicators
were computed using the SDM. We used R version 4.0.2 with “ENMEval,”
“usdm,” and “biomod2” package (Thuiller et al., 2020) to compute ensem-
ble of six SDM algorithms including Generalized Linear Modeling, General-
ized Additive Modeling, Generalized Boosted Modeling, Multivariate
Adaptive Regression Spline, Random Forest, Maximum Entropy.

Predictor variables known to affect the distribution of Asian elephants
were chosen (Chen et al., 2016; Deb et al., 2019; Estes et al., 2012;
Kitratporn and Takeuchi, 2019; Naha et al., 2020; Wato et al., 2016;
Wilson et al., 2015). The environmental factors under the climatic suitabil-
ity model included six bioclimatic and three drought variables: annual
mean temperature, diurnal range, isothermality, temperature seasonality,
annual precipitation, precipitation seasonality, drought intensity, drought
frequency, and KBDI in the dry quarter. Nine factors were considered for
landscape models: forest cover within 6 km, percent food cover (forest
and crop land cover) within 6 km, distance to crop, distance to forest, dis-
tance to plantation, distance to transport, distance to urban area, distance
to water, and TRI. Multicollinearity was checked by removing variables
with r > |0.75| and VIF > 10. Multiple sets of pseudo-absences were then
randomly generated and combined with presence data, and the combined
dataset was then replicated and split in a 70/30 ratio for training/testing,
respectively (Fig. S3). Model performance was evaluated using the true
skill statistic (TSS) and area under the curve (AUC) of the receiver operating
characteristic (ROC). Models with TSS > 0.6 were included in the final en-
semble calculation using the weighted mean based on their TSS values.

The dispersal probability was calculated using the Euclidean distance
from the protected areaswith a knownelephant presence. The inverse func-
tion was then applied to place a higher value on areas closer to the bound-
ary of elephant habitats. Additionally, the distance was restricted to 50 km,
beyond which the threshold likelihood was zero.

2.5. Exposure modeling and projection

Exposure refers to the presence of assets that may include, but are not
limited to, people, livelihoods, properties, environmental functions, and
services that may be affected by hazards (IPCC, 2014). Here, exposure is
represented by the number of rural populations, as projected by Gao
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(2020). Available data for the baseline and future periods were obtained.
Because the spatial distribution of the population was skewed, a natural
log was applied to the data prior to further processing.

2.6. Vulnerability modeling and projection

Vulnerability refers to the characteristics or tendencies that are affected
(IPCC, 2014). Vulnerability is represented by socioeconomic conditions
and the probability of drought. Three socioeconomic variables that reflect
the capacity of people to cope when exposed to hazards were used: house-
holdswith internet access, workforcewith higher secondary education, and
average householdmonthly income. The finest available data at the provin-
cial level fromyears as close to 2015 as possiblewere obtained from the Na-
tional Statistic Office of Thailand (NSO, 2020). Accessibility to information
and technology was suggested to strengthen the HEC-affected community
(Nyirenda et al., 2018). The same study also found that the education
level allowed access to alternative sources of income and increased the abil-
ity to implement more effective crop protection measures (Nyirenda et al.,
2018). Lastly, high income enabled households tomitigate conflict and suf-
fer less from wildlife-induced loss (Inskip and Zimmermann, 2009).

Additional natural hazards can aggravate the vulnerability of the
human population. Drought was chosen because it is expected to cause a
large yield reduction in the future (Leng andHall, 2019). The drought prob-
ability was calculated to represent the added pressure on the communities
exposed to HEC:

Drought Probability ¼ ∑Devent

N
(4)

where the number of Devent in a location and the maximum number ob-
served from the entire region (N) over a 20-year period were used.

2.7. Composite index and validation

A composite index was generated based on guidelines provided by
United Nations (United Nations, 2019). Sub-indicators were first checked
for multicollinearity. Min-max normalization was then applied, followed
by geometric mean calculation:

I
0
i ¼

Xi − Xmin

Xmax − Xmin
(5)

∏
n

i¼1
Ii

0wi

� � 1
∑n
i¼1

wi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I
0w1
1 I

0w2
2 ⋯I 0wn

n
n
q

(6)

where Xi is the value of sub-indicator i while Xmin and Xmax are the mini-
mum and maximum values, respectively, within the range of the sub-
indicator i. Ii' refers to normalized sub-indicator i and wi represents
weighting power. Owing to uncertainty in determining the level of influ-
ence from each sub-indicator, equal weighting was applied. We performed
the analysis in R version 4.0.2 using the “Compind” package. The risk score
and underlying components ranged from 0 to 1. A 5-class equal interval
classification was applied, from very low to very high.

Validation of HEC risk requires long-term historical data of HEC events
and related information (e.g., loss quantity and compensation records), but
such data have not been tracked systematically for Thailand. Alternatively,
we performed validation using the locations of 803 HEC events from the
Khaoyai-Dong Phayayen FC(2) with 60 sets of randomized HEC pseudo-
absences (Fig. S4a). These HEC records were collected with GPS coordi-
nates from two studies: Wongram and Salee (2017) in 2012–2017 and
DNP in 2019. The area under the receiver operating characteristic curve
(AUC), a threshold-independent metric, was generated from the true posi-
tive (sensitivity) and false positive (1-specificity).
5

3. Results

3.1. Baseline and future hazard levels

The high level of baseline hazard (>0.8) was concentrated close to
protected areas, especially near the eastern FC(1), KhaoYai-Dong Phayayen
FC(2), Phukieo-Namnow FC(4), western FC(10), Khaengkrachan FC(11),
and Klong Saeng-Khaosok FC(13) (Fig. 3a), which corresponded to the cur-
rent areas estimated to host a large number of elephant populations (Fig. 1).
However, these locations were projected with an overall decreasing hazard
level across future scenarios. Contrarily, Lamnampai-Salawin FC(8),west of
Mae Pin-Omgoi FC(9), west of Western FC10, Phumieng-Phuthon FC(5),
and north of FC2 were estimated to have higher future hazards (Fig. 3a).

Across all scenarios, the general pattern of higher future hazards in the
northwest directionwas a result of similar climate projections. However, lo-
calized differences among scenarios were a result of projected land cover
variations and buffer-zone policies. The increasing future hazard to the
west of FC10 under the developmental-focus scenario (orange and red)
was from higher landscape suitability due to the change in agricultural
land cover (Fig. 3a, S2, and S5). The areas north of FC8 and FC2 showed dif-
ferences in future hazards, where restrictions were imposed within buffer
zones, as shown under the green/yellow and orange/red scenarios
(Fig. 3a and S5).

3.2. Baseline and future exposed rural population

The baseline exposure was lower in locations closer to protected areas,
whereas higher values were estimated in the central region, northeastern
plain, and areas south of Khao Laung FC(14), where a high density of
human population resides (Fig. 3b). In future scenarios, many locations ad-
jacent to protected areas were projected with a slight increase in exposure
(<5%). A large reduction in future exposure has been projected in locations
near areas with a high baseline human population. This decrease in expo-
sure level was due to the combination of urban expansion and lower rural
population, with an overall greater reduction in the number of exposed per-
sons under developmental-focus (orange and red), −38%, compared to
environmental-focus (green and yellow), −21% (Table 2). This larger re-
duction in the exposed population under developmental-focus scenarios
corresponded to the demographic trajectory of SSP5, a relatively low pop-
ulation growth and fertility with high migration and urbanization (O’Neill
et al., 2017).

3.3. Baseline and future vulnerability levels

Baseline vulnerability was low, with an average of 0.34 countrywide.
Under future scenarios, an overall higher vulnerability was projected for
most locations, of which the largest increase (>100%) was estimated in
the northern region near FC8 and FC9 (Fig. 3c). Despite an increase in
lower magnitude, south of FC14, central of FC10, FC11, and north of FC2
areas still showed an above-average increase in future vulnerability com-
pared to other locations. Since three socioeconomic sub-indicators were as-
sumed to be static in all future scenarios, the increase in vulnerability was
solely due to a higher drought probability. Although all projections under
developmental-focus scenarios had slightly higher drought probabilities
than the environmental-focus scenarios, they were very close, without
clear differences in spatial distribution.

3.4. Baseline HEC risk and future changes in Thailand

The validation of baselineHEC risk fromFC2 showed an average AUCof
0.71 with 0.01 standard deviation (Fig. S4b), which is considered a good
predictive performance.

The baseline HEC risk in Thailandwas very low to low (0.0–0.4) inmost
locations and increased to moderate and high (0.4–0.8) closer to the
protected areas (Fig. 4a). The topfive FCs with the highest average baseline
HEC risk were FC1, FC2, FC14, FC11, and FC13. Despite the reduction in



Fig. 3. Spatial distribution of baseline risk components including Hazard, Exposure, and Vulnerability and their average change in percentage under future scenarios. a.
Hazard is expressed as the probability of elephant presence under four scenarios: environmental-focus with elephant-zones (Green Future), environmental-focus without
elephant-zones (Yellow Future), developmental-focus with elephant-zones (Orange Future), and developmental-focus without elephant-zones (Red Future). b. Exposed
human population and c. vulnerability were evaluated under two RCP/SSP scenarios without considering the effect from buffer zones.
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future risk, these FCs were projected to remain in the top five under future
scenarios. Areas with increasing future risk were FC8, FC9, areas surround-
ing FC5, and north of FC2. The complete elimination of future HEC riskwas
rarely predicted in areas coinciding with patterns of decreasing exposure
from urban expansion. Across future scenarios, the overall spatial patterns
were similarly estimated, with a few locations where clear variations
were identified. Under environmental focus (green and yellow), larger spa-
tial coverage of decreasing risk was projected to the west of FC10, with in-
creasing risk on the east side adjacent to the FC boundary. HEC buffer zones
can cause both negative and positive impacts, as is visible in the green and
orange scenarios. For example, the areas near FC8 and FC9 showed an in-
creasing HEC risk, but those immediately adjacent to protected areas
north of FC2 showed decreasing results.

On average, the HEC risk levels for 69% of FCs (n=11) were projected
to be reduced under future scenarios (−3.1% to−57.9%),while 25% (n=
4) were identified with an increase (1.7% to 7.4%) (Fig. 4b). By inspecting
risk components (Fig. 4b), hazard was projected to decrease in 13 FCs, in-
crease in two FCs (FC8 and FC5), and remain stable with zero hazard in
FC3. 85% of FCs with decreasing hazard levels were projected with over
−10% change, of which FC15 and FC1 were estimated to have over
−30% reduction. Exposure in and around all FCswas estimated to decrease
with an average change of −9.15% (−3.2 to−26.5%), where the largest
decrease was projected in the southern region, including FC16, FC15, and
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FC14, owing to urban expansion. In contrast, vulnerability across all FCs
was projected to increase by 24.2% on average (8.8 to 48.7%), with three
northern FCs (FC8, FC9, and FC7) showing the largest change of over
+30%.

Although the total number of exposed populations potentially affected
by hazards was projected to reduce across four future scenarios, the popu-
lation within each hazard level was estimated to have a higher level of vul-
nerability (Table 2). Under very high hazard conditions, approximately
332,000 exposed persons were estimated at the baseline period, but de-
creased to around 19,000, 15,000, 11,000, and 11,000 individuals in the
Green, Yellow, Orange, and Red future scenarios, respectively. Across all
hazard levels, the pattern of larger reductions under developmental focus
(orange and red) compared to environmental focus (green and yellow)
was similarly projected. However, the reduction gaps became smaller as
the hazard moved from very high to low.

4. Discussion

This study applied a risk assessment framework to estimate the HEC risk
under baseline and future climate change scenarios in Thailand. Our results
identified different degrees and directions of changes in futureHEC risk and
highlighted the underlying influences of the hazard, exposure, and vulner-
ability components. Our projections suggested a higher future HEC risk



Fig. 4. Projected HEC risk at the baseline (2000–2019) and near future scenarios (2025–
change under four scenarios: environmental-focus with elephant-zones (Green Future),
with elephant-zones (Orange Future), and developmental-focus without elephant-zones
ponents including Hazard, Exposure, and Vulnerability. The circle symbol shows outliers.

Table 2
The population (in 1000 person) with different levels of vulnerability that were ex-
posed to varying levels of hazard under a baseline for environmental-focus with el-
ephant-zones (Green Future), environmental-focus without elephant-zones (Yellow
Future), developmental-focus with elephant-zones (Orange Future), and develop-
mental-focus without elephant-zones (Red Future).

Hazard Vulnerability Exposed population (1000 person)

Baseline Green
Future

Yellow
Future

Orange
Future

Red
Future

Very
high

Moderate 9 18 14 10 11
Low 323 1 1 0.3 0.3
Very low

Total very high hazard 332 19 15 11 11
High Moderate 115 613 613 468 480

Low 1286 176 204 86 117
Very low 0.1

Total high hazard 1401 789 817 554 597
Moderate Moderate 213 1290 1228 1296 1121

Low 1963 468 498 334 395
Very low 25

Total moderate hazard 2201 1758 1727 1630 1516
Low Moderate 537 2280 2057 1992 1881

Low 3553 1421 1399 1332 1270
Very low 66

Total low hazard 4156 3701 3457 3314 3151
Very low Moderate 7029 19,605 19,894 15,103 15,377

Low 24,146 5362 5325 3790 3749
Very low 374 42 42 36 36

Total very low hazard 31,549 25,010 25,261 18,928 19,161
Total overall 39,638 31,276 31,276 24,436 24,436

N. Kitratporn, W. Takeuchi Science of the Total Environment 834 (2022) 155174

7

toward the northwest region, which resulted in an average increase of
1.7%–7.4% for the four FCs in the northern region, while FCs at lower
latitudes showed a decreasing future HEC risk of −3.1% to −57.9% on
average. More broadly, our findings attested to the importance of climate
change considerations in conservation planning, which has been shown
to impact bothwild elephants and humans. Although the complete elimina-
tion of risk from wildlife conflict is unlikely, mitigation and adaptation
strategies to alleviate potential impacts can be implementedwhen the influ-
ences of risk components can be identified (Gaillard et al., 2019).

4.1. HEC effects due to climate change

The increase in future HEC risk in the mountainous regions of northern
Thailand aligns with the reported changes in the distribution of suitable
ranges toward higher latitudes and elevations for various species, including
Asian elephants (Kanagaraj et al., 2019; Scheffers et al., 2016). Similar to
the findings of Kanagaraj et al. (2019), climate change caused an increase
in human pressure fromurbanization and an increase in evaporative demand
owing to higher temperatures at lower latitudes. Along with a higher hazard
due tomore favorable conditions for elephants, the northern region was also
projected to face an increase in vulnerability to drought. Such climate-
induced vulnerability is expected to reduce the capacity of people exposed
to bare HEC damage in the future. Local observations have identified
changes in weather patterns that have caused a decrease in crop yield, inten-
sified extreme events, and escalated resource competition (Savo et al., 2016).

Although generally showing similar patterns across the four future
scenarios, localized differences in the future outlooks between
2044) for the Thailand forest complex (FC). a. The baseline risk and future percent
environmental-focus without elephant-zones (Yellow Future), developmental-focus
(Red Future). b. Boxplots of the future HEC risk for 16 FCs and the underlying com-
The triangle symbol (▲) represents the baseline values.



N. Kitratporn, W. Takeuchi Science of the Total Environment 834 (2022) 155174
environmental- and developmental-focus climate change scenarios were
observed. A more exposed rural population was expected under the
environmental-focus projection due to slower urban expansion. Addition-
ally, the introduction of elephant buffer zones seemed to foster a higher
HEC risk. Therefore, choosing a greener pathway will likely result in a
higher risk of HEC.

4.2. Implications for HEC management

Although northern FCs currently host relatively low wild elephant pop-
ulations and face very low levels of HEC risk (Fig. 4b), climate-induced vul-
nerability was expected. For these FCs, various strategies to enhance
adaptive capacity and coexistence can be considered, such as improving ed-
ucational attainment (O'Neill et al., 2020), and behavioral change training
(van Eeden et al., 2018). Because these areas are still not fully developed,
land use planning can also be applied to selectively minimize access to po-
tential habitats. Although a reduction in HEC risk was estimated for 11 FCs
in the southern, eastern, and lowerwestern regions of Thailand, the top five
FCs with the highest future HEC remained, specifically FC1, FC2, FC14,
FC11, and FC13. These FCs currently host large elephant populations
(Fig. 1), but existing favorable habitat conditions are expected to decline,
resulting in a lower hazard (Fig. 3a). Since population responses usually
lag behind disturbances (Kuussaari et al., 2009), the reduction in habi-
tat suitability would not immediately lead to a decrease in elephant
numbers and subsequent HEC hazards but can cause extinction debts.
FCs with less favorable habitat conditions may retain a high number
of elephants for a period of time, but their long-term survival is likely
to be affected by increasing localized extinction rates (Figueiredo
et al., 2019). Therefore, management actions must be identified to
buffer future impacts, which may include the establishment of protected
area networks (Maron et al., 2015), increasing existing carrying capacity
through habitat improvements (Bonebrake et al., 2018), and translocation
of populations to more suitable locations (Bonebrake et al., 2018). Concur-
rently, immediate on-the-ground investigations are necessary to increase
community tolerance.

4.3. Modeling limitations and future improvements

Future applications and interpretations of this framework should recog-
nize its limitations. First, although our study used multiple GCMs to cover
ranges of plausible climate, the results of future projections still are inher-
ently uncertain (Sanderson et al., 2015). Second, bias could be present in
the elephant presence-only data used for suitability modeling, which may
or may not represent the fundamental niche of the species(Faurby and
Araújo, 2018). We used established databases and official records; how-
ever, the subsequent hazard may change if the species has a broader
niche than that captured by the available data. Third, large agricultural
areas in this study were projected to be converted into abandoned lands,
but the conversion of this land cover for other uses was not considered.
Abandoned land may support either bioenergy production or reforesting,
(Chen et al., 2020) which likely differs in the distribution of HEC risk.
Lastly, owing to the limitation of HEC records, the validation data were ob-
tained from one FC in the northeastern region, which may or may not rep-
resent the nature of conflict in other locations.

We also identified possible future research directions to enhance the
proposed framework. Because species demography and behavior, phenol-
ogy of food resources in agriculture and natural land, and human percep-
tion and tolerance are crucial determinants of human-wildlife coexistence
(Philip J. Nyhus, 2016; Branco et al., 2019; ; Struebig et al., 2018), methods
to incorporate such data as sub-indicators could be explored. Although we
modeled HEC risk for Asian elephants in Thailand, this framework is scal-
able beyond the borders of a single country. Hence, further studies could as-
sess the impacts of climate change scenarios on the transboundary
population of elephants in mainland Southeast Asia. In addition, the frame-
work can be tested on other species.
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5. Conclusion

To offer a proactive approach in addressing wildlife-induced conflicts,
this study proposes a risk assessment framework that enables the future
projection of HWC risk and underpinned components requiring manage-
ment interventions. Asian elephants are a cornerstone species for tropical
dry forest and a conservation flagship in South and Southeast Asia, yet
they face with increasing HEC. Unlike South Asia, majority of elephant con-
servation in Thailand and the neighboring countries in Southeast Asia have
been focused on a few sites, lacking large-scale assessment. The specific use
case of the proposed framework on HEC in Thailand cover countrywide as-
sessment which suggests a shift in future HEC risk toward areas at higher
latitudes and altitudes. We recommend that management focus on capacity
building for communities within four FCs in the northern region and habi-
tat improvement for 11 FCs at lower altitudes, especially thosewith existing
large elephant populations. Further on-the-ground work is necessary to ob-
serve current HEC situations and determine specific actions; however, our
results can support evidence-based allocation of conservation resources in
anticipation of plausible future changes. This framework can be adopted
by both scientific and conservation communities to assess the range of rel-
evant factors, diverse spatial policies, and different locations and species
worldwide.
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