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Land Cover Classification and Change Analysis in
the Horqin Sandy Land From 1975 to 2007

Hasi Bagan, Wataru Takeuchi, Tsuguki Kinoshita, Yuhai Bao, and Yoshiki Yamagata

Abstract—Observations over the last three decades show that de-
sertification poses a serious threat to the livelihood and produc-
tivity of inhabitants of the Horqin Sandy Land region of China.
We evaluated the dynamics and trends of changes of land cover
in the Horqin Sandy Land by using Landsat archive images from
1975, 1987, 1999, and 2007. We applied two supervised classifica-
tion methods, the self-organizing map neural network method and
the subspace method. Our analyses revealed significant changes
to land cover over the period 1975–2007. The area of cropland
doubled over the last three decades. This expansion was accom-
panied by large increases in water consumption and considerable
loss of areas of grassland and woodland. Many lakes and rivers
shrank rapidly or disappeared in this region between 1975 and
2007. The sandy area expanded rapidly from 1975 to 1987 but
gradually slowed thereafter.

Index Terms—Change detection, desertification, Horqin Sandy
land, land cover, landsat.

I. INTRODUCTION

T HE Horqin Sandy Land is in the arid and semi-arid south-
eastern part of the Inner Mongolian Autonomous Region

in China. This region has undergone severe desertification in
recent decades [1], [2]. Increasing amounts of airborne dust and
frequent sandstorms caused by desertification have severely
affected the populations and productivity of major Chinese
cities. During the last three decades, both the frequency and in-
tensity of dust and sandstorms have increased, their geographic
coverage has expanded, and the amount of damage they cause
has grown; they affect not only major Chinese cities but also
areas of Japan and Korea [3].

Numerous scientists have suggested that desertification in the
Horqin Sandy Land has been caused primarily by human activ-
ities. Population increases, excessive land development, over-
grazing, and collection of fuel wood have had key roles in this
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desertification process [1], [4], [5]. Since the 1970s, immigra-
tion of people [6] has rapidly increased the human population
of grassland areas in the Horqin region. Environmental changes
have led to the traditional nomadic lifestyle of the local people
being gradually replaced by modern settlements. Consequently,
the number of grazing animals and the land area developed for
both agricultural and urban use has increased [5]–[7].

Agricultural expansion and overgrazing became a serious
problem in the early 1980s as a result of a government rural
reform program in this region [7], [8]. Furthermore, a market
economy was introduced to Inner Mongolia in the mid-1980s,
and this included a system that allocated responsibility for live-
stock, cropland, and usable grassland to households [9]. The
household responsibility system stimulated a rapid increase in
both the area of cropland and the number of livestock in the
Horqin Sandy Land. These essentially uncontrolled activities
caused destruction of woodland and grassland, degradation of
soil, and increased water consumption [10], [11].

In 2001, a series of large sandstorms swept through much of
northern China [12]. These storms alerted the Chinese govern-
ment to the urgent need for a sustainable land-use policy for the
Horqin Sandy Land, a region of sandy soils and sparse vege-
tation cover that provides a sediment substrate source for such
storms.

The government initiated several projects to reduce the effects
of dust and sandstorms in the region. Through these projects, the
families of local herders and farmers were moved from deserti-
fied steppe and ecologically fragile farmland and settled in new
towns.

Agricultural expansion and urbanization in this region led to
dramatic changes in land use. In eastern Inner Mongolia be-
tween 1986 and 1996, grassland conversion produced one mil-
lion hectares of new farmland, matching the amount of farmland
created during the Cultural Revolution (1966–1976) [13]. Ex-
panding cropland areas and urbanization greatly increase water
and chemical fertilizer use and considerably reduce biodiver-
sity through the loss, modification, and fragmentation of habi-
tats [14].

Remotely sensed data collected over a span of years can be
used to identify and characterize both natural and anthropogenic
changes over large areas of land [15], [16]. Landsat satellite
images are ideal for this purpose; imagery recorded over nearly
four decades provides a unique resource for temporal analysis
of land cover [17].

The purpose of this study was to investigate spatial and
temporal land-cover changes in the Horqin Sandy Land and to
investigate the possible causes of those changes. To do this,
we applied land-cover classification schemes to Multispectral
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Fig. 1. Location of the study area (red rectangle in left-hand panel). The right-hand panel shows the September 1999 full-scene Landsat TM image (RGB = bands
5, 4, 3) of the study area. The red rectangle in the right-hand panel indicates the area of the images shown in Fig. 4.

TABLE I
SUMMARY OF LANDSAT TIME-SERIES SCENES USED IN THIS STUDY

Scanner (MSS), Thematic Mapper (TM), and Enhanced The-
matic Mapper Plus (ETM+) sensor images recorded between
1975 and 2007, which we acquired from the Landsat archive.

We used two supervised classification methods, the self-or-
ganizing map (SOM) neural network method and the subspace
method, to accurately classify land cover on Landsat images
recorded in 1975, 1987, 1999, and 2007. This allowed us to
quantitatively present land-cover changes between 1975 and
2007, report on the trends of those changes, and discuss some
of the most likely causes of desertification in the Horqin Sandy
Land.

II. METHODOLOGY

A. Study Area

The Horqin Sandy Land is in the southeastern part of the Inner
Mongolia Autonomous Region of China ( ,

; Fig. 1) and covers an area of about 30,000 km .
It has a continental arid and semi-arid climate with an annual
mean temperature of about 6.8 C, mean annual precipitation of
366 mm, and annual mean potential evaporation of 1935 mm.
The annual frost-free period is about 130–150 days [18].

B. Data Description

We acquired five Landsat images to achieve multitemporal
coverage of the area and thus detect temporal changes of land

cover. Table I provides information on the image data and clas-
sification methods used. The images were geometrically recti-
fied to an Albers equal-area projection system by using a dif-
ferent number (21–28) of ground control points (GCPs) for each
image. GCPs were well dispersed throughout each scene and
yielded root-mean-square errors of less than 0.65 pixels. The
spatial resolution of TM and ETM+ data was 30 m for bands
1–5 and 7. Where TM band 6 and ETM+ band 61 (thermal in-
frared) were acquired at 120 m resolution, they were resampled
to 30 m using the cubic convolution method done by U.S. Ge-
ological Survey. The spatial resolution of the four MSS bands
was approximately 79 m, but these data were resampled to 60 m
done by U.S. Geological Survey.

The 1975 MSS data do not cover a very small area at the right-
hand edge (about 10%) of the study area, so we used a mosaic
of 1975 and 1976 MSS images to attain full area coverage. For
this mosaic, the 1975 MSS data were used as the base image and
the 1976 MSS data were color balanced to match the 1975 data
range (hereafter we refer to this mosaic as the 1975 MSS data).

In addition to above Landsat data, ancillary GIS datasets and
other ancillary satellite data were also used as reference data to
assist in our field investigations (Table II). The GIS data include,
the National Land-Use/Land-Cover data sets (NLCD, hereafter)
of the year 1995 and 2000 at a spatial scale of 1:100000 [19],
LREIS digital maps at the scale of 1:4000000 [20]. The vege-
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TABLE II
ANCILLARY DATA SETS USED FOR SUPPORT GROUND REFERENCE DATA COLLECTION

TABLE III
DESCRIPTION OF LAND-COVER CLASSES AND PIXEL COUNTS BY LAND-COVER CLASS

tation map (published in 1979), soil map (published in 1978),
desert map (published in 1988), road map (published in 1988),
and river map (published in 1989) in the LREIS digital maps
were used. The ancillary satellite data used in this study was:
a mosaic of SPOT-5 images (2.5-m spatial resolution) acquired
during 2005–2006; an ALOS bundle comprising a panchromatic
PRISM image (2.5-m spatial resolution) and multispectral spa-
tial resolution AVNIR-2 images (10-m spatial resolution; three
visible bands and one near-infrared band) acquired on October
7, 2007; three Landsat MSS scenes (acquired on 16 May 1976,
27 July 1976, and 8 August 1977); four Landsat TM scenes (ac-
quired on 23 September 1988, 20 June 1989, 03 June 2000, and
30 May 2007); and a Landsat ETM+ (acquired on 11 August
1999). As well, other ancillary data such as Shuttle Radar To-
pography Mission (SRTM) elevation data [21] was used to pro-
vide information about elevation of the area and to help locate
the ground reference site.

To thoroughly understand the ground truth situation, six field
surveys were conducted in 2000, 2002, 2003, 2006, 2007, and
2009 at a number of locations across the study area. During
the field surveys, photos were taken for ground reference data
with GPS facilities and interviews with local inhabitants were
recorded.

Nine land-cover types were defined based on our field investi-
gations (Table III). The ground reference sample sites were ob-
tained from extensive field survey. Ground reference data sites
were selected for each mapping class for each Landsat recording
date to accurately portray the spectral complexity and variability
within each class. All initial digitized ground reference sites
(polygons) were compared with the corresponding Landsat im-
agery acquired in 1975, 1987, 1999, and 2007, respectively, to

provide the correct interpretation at the time of the image date.
In addition, other ancillary satellite images and ancillary GIS
datasets (Table II) were used to support image interpretation and
to provide as much information as possible to help to locate the
ground reference site. When the sample site (polygon) contained
multiple classes or was poorly delineated, a new homogeneous
sample polygon (or line) was delineated within the original site
(polygon). A subset of the image interpreted sites was also field
visited and additional sites were collected. The finally selected
reference sites were either polygonal or linear, and their loca-
tions were recorded using the ITT ENVI software package. The
reference sites were then divided into training and testing sets
to ensure spatial disjointing and to reduce the potential for cor-
relation between the study data and the test data (Table III).

III. CLASSIFICATION METHODS

In recent years, many advanced methods have been applied in
Landsat image classification, each of which has both strengths
and limitations. We examined two classification methods, the
SOM and subspace methods, for each of the Landsat data sets.
Our testing showed that for MSS data classification, the SOM
method provides better classification accuracy than the subspace
method. However, for TM and ETM+ data, the subspace method
results are better than those of the SOM method. Thus, the SOM
method was chosen for 1975 MSS classification, and subspace
method was chosen for TM and ETM+ data classification. The
following two subsections present descriptions of the SOM and
subspace classification methods.
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Fig. 2. SOM structure and training process.

A. SOM

There are many neural network methods available for image
classification. Among these, the SOM method is more suc-
cessful in classification and pattern recognition [22]. The SOM
method generally uses two layers, an input layer and an output
layer. The input layer nodes are all connected to those of the
output layer (competitive layer).

In SOM, both the distribution and the topology of features of
the input layer are identified by using an unsupervised, competi-
tive, neighborhood learning method. The high-dimensional data
are then projected onto a low-dimensional map (competitive
layer), usually as a two-dimensional map. The neurons (nodes)
in the competitive layer are arranged by topological order in the
input space [23], [24].

The SOM computes the Euclidean distance of the input vector
(pixel) to each neuron, and find the winning neuron using
the nearest-neighbor rule. Then SOM applies an iterative proce-
dure to update the winning neuron’s weight vector in the com-
petitive layer. However, instead of updating only the winning
neuron’s weight vector, all neurons within a defined neighbor-
hood of the winning neuron are updated by a self-organization
process (Fig. 2).

After a winning neuron has been identified, it and its neigh-
bors are updated to reduce the difference between the winning
neuron and the input vector. The weight vector updating rule
for a neighborhood neuron is given by

(1)

where is the learning-rate function, and is the
neighborhood function. Both and the width of decrease
gradually with increasing step .

Selecting a neighborhood kernel function is important for
SOM land-cover classification. Instead of simple neighborhood
function [25], we adopt the Gaussian kernel as the neighborhood
function. The Gaussian neighborhood function we used was

(2)

where is the winning neuron, is the activated neuron in the
neighborhood region, and is a neighborhood width param-
eter that may or may not be time variant. We defined as

(3)

where is the neighborhood radius at iteration step . The
neighborhood radius is decreased until it reaches the pre-
defined final radius value according to

(4)

where , is the maximum iteration time, is
the initial neighborhood radius, and denotes the maximum
integer that does not exceed .

After SOM training, supervised learning vector quantization
(LVQ) was implemented to fine tune the SOM’s weighting vec-
tors [25]. The supervised LVQ employs the same network ar-
chitecture as the SOM. The LVQ is based on the known clas-
sification of feature vectors, and can be treated as a supervised
version of the SOM. Assuming that the pixel is presented at
training time , weight vector of neuron is updated as

(5)

where is the learning-rate function and starts with
a small , usually less than 0.1.

To verify the performance of the above SOM method, we per-
formed simulations on the 1975 MSS data set. The simulation
results showed that the above SOM method provided classifi-
cation accuracy of 71%, which was 3.3% better than that pro-
duced by SOM based on the simple neighborhood function.
We found that the optimal parameters for SOM learning were
as follows: a two-dimensional competitive layer of 11 11
(121) nodes; learning rate gradually converging from 0.9
to 0.0015 as learning progresses; and neighborhood learning
area converging from 7 7 nodes to a single node as learning
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progresses. The maximum number of SOM iterations was set
at 3000. The parameters for LVQ learning were a maximum
number of iterations of 1000 and a learning rate gradually
converged from 0.003 to 0.00001.

B. Subspace Method

The subspace method [26] has been widely used for pattern
recognition and has recently been applied to classification of
remote sensing data [27].

Like SOM, the subspace method projects high-dimensional
input data onto a low-dimensional feature space, but it differs
from SOM in that the different classes are represented in their
own low-dimensional subspaces.

The basic subspace method is called class-featuring informa-
tion compression (CLAFIC) [28], which is achieved as follows.
Let be the number of input feature dimensions, which, in our
case, is equal to the number of Landsat bands; let

be the basis vectors of the subspace of class ,
which are computed from training set of the class by the prin-
cipal component analysis; here, is the subspace dimension and

is the number of classes. The calculation of the square of the
projection length of pixel in the subspace of class is
given by

(6)

After computing the projection lengths between pixel and
each subspace, pixel is placed in the class that has the largest
projection length.

Misclassifications in CLAFIC are caused mainly by overlap
of class subspaces. Averaged learning subspace method
(ALSM) has been proposed as a way to separate subspaces
[26], [29]. In ALSM, class subspaces are slowly rotated to re-
duce the overlap between them. ALSM is described as follows.
At iteration , the conditional correlation matrix is computed
from

(7)

here, the symbol indicates that the pixel of class has
been misclassified into class .

After the conditional correlation matrix has been generated,
the correlation matrix for class is updated as follows:

(8)

where and are learning parameters; both usually have small,
constant positive values. Then, the eigenvalues and eigenvectors
of can be calculated to generate a new subspace of class

. This iterative process ends when either the entire training
data are fully recognized or the maximum number of iterations
has been reached. Selection of both the subspace dimension
parameters and learning parameters is important in the subspace
training phase. If in ALSM the subspace dimensions for each
class are the same and the two learning parameters are equal,
the accuracy of recognition is optimized [30]. In this study, the
subspace dimension is fixed at 3 for 1987 TM, 1999 ETM+, and

2007 TM; the optimal learning parameters ( and ) are fixed at
0.26 for 1987 TM, 0.26 for 1999 ETM+, and 0.07 for 2007 TM;
and the number of optimal training iterations are 56 for 1987
TM, 95 for 1999 ETM+, and 72 for 2007 TM.

IV. RESULTS AND DISCUSSION

We wrote programs for the SOM and subspace methods in
C/C++ programming language (Microsoft Visual Studio 2005),
which allowed us to apply the classification methods discussed
above to our data. The MSS image was classified as 60-m reso-
lution and the TM and ETM+ images as 30-m resolution.

The confusion matrix (error matrix) is a commonly used tool
for assessment of accuracy of land-cover classification [31]. The
producer’s and user’s accuracies are ways of representing in-
dividual category accuracies instead of just the overall classi-
fication accuracy. Let is a confusion matrix, is the
number of pixels in mapped land cover class and reference land
cover ; is the number of pixels in mapped land
cover class ; and is the true number of pixels
in land cover class . The user’s accuracy for land-cover class
is defined as

(9)

The producer’s accuracy for land-cover class is defined as

(10)

Confusion matrices comparing test (reference) data to clas-
sification results were created, and overall accuracy, producer’s
and user’s accuracies, and statistics of agreement were gen-
erated (Table IV). Overall accuracies were greater than 86% for
the TM and ETM+ images, and the corresponding statistics
were greater than 0.84. In comparison, the MSS image showed
an overall classification accuracy of 70.66%, with a statistic
of 0.66, both lower than those of the TM and ETM+ images.

The four vegetation types (woodland, cropland, sparse grass,
and grasslands) were generally classified well in TM and
ETM+ data, with producer accuracies greater than 78%, except
for grassland in the 2007 data. The accuracy of classification
of vegetation classes for MSS data was more variable, but we
considered these data to be moderately well to well classified.
The urban/built-up class was well classified in TM and ETM+
data, with producer accuracies greater than 88%, but posed
problems for the MSS data where it was confused with both
grassland and water. Wetland was the most difficult of all
categories to classify and was confused with woodland and
cropland for all data sets.

Full-scene land-cover classification maps for each of the four
years are shown in Fig. 3, and detailed land-cover maps for the
area around Daqintala town are shown in Fig. 4 (see Fig. 1 for lo-
cation of the detailed maps). Both sets of land-cover maps show
that over the last three decades there has been a vast expansion
of cropland along rivers and around lakes as well as a general
expansion to the southern and northeastern parts of the study
area. The two time series of maps clearly show serious losses
of areas of woodland, grassland, and water. The largest areas
of sand have developed in the western part of the study area,
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TABLE IV
ACCURACY OF CLASSIFICATIONS FOR THE FOUR LANDSAT-DERIVED LAND-COVER MAPS, SHOWN AS PRODUCER’S AND USER’S ACCURACIES

FOR EACH CLASS, OVERALL ACCURACY, AND � STATISTICS

Notes: Prod. indicates the Producer’s accuracy and User indicates the User’s accuracy.

Fig. 3. Time series of land-cover maps of the study area in (a) 1975, (b) 1987, (c) 1999, and (d) 2007.

and areas of bare ground have appeared mainly along rivers and
around lakes.

There are several major trends evident in the changes of
land cover and they are consistent over the period 1975–2007
(Figs. 3, 4, and 5). The area of water bodies decreased as did
areas of woodland and grassland, and there was a marked in-
crease in areas of cropland. Previous studies [32] also reported
that grassland transformed into cropland at the village scale in
Horqin sandy land.

The area of cropland doubled over the past three decades, in-
creasing from 15.8% of the study area in 1975 to 31.7% in 2007.
In contrast, the area of water bodies decreased from 2.1% in
1975 to 0.6% in 2007, while the areas of woodland and grass-
land decreased from 13.1% and 28.5%, respectively, in 1975,
to 5.8% and 19.7%, respectively, in 2007. However, from 1987
to 2007, the area of the woodland stopped the tendency to de-
crease.
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Fig. 4. Time series of detailed land-cover classification maps around Daqintala town in Inner Mongolia for (a) 1975, (b) 1987, (c) 1999, and (d) 2007. The location
of the maps is shown in Fig. 1.

For the sandy land, the most rapid desertification occurred be-
tween 1975 and 1987. Over this period, the sand area increased
from 4.1% to its maximum of 11.5% in 1987. Land rehabilita-
tion after 1987 resulted in a steady decrease of sand area to 7.8%
in 2007.

For the total area of grassland area and sparse-grass, the most
rapid decrease occurred between 1975 and 1987. Over this
period, the total area of grassland and sparse-grass decreased
from 60.65% to 44.44%. However, after 1987 there was a
steady increase of total area of grass land and sparse-grass to
50.45% in 2007. In reaction to land degradation events, the
central government initiated the Sloping Land Conversion Pro-
gram (also known as Grain for Green) in 1999, with particular
emphasis on west China. This policy has been introduced in
different ways in Inner Mongolia. Xun and Bao [33] reported
that the ecological reconstruction policy in Inner Mongolia
is implementation of the ecological migration policy. Under
the new policy, all of the areas affected by serious ecological
degradation are sealed off for more than five years and no
grazing will be allowed in these areas. Our result shows that
the policy shift successfully suppressed the sand area in Horqin
sandy land.

In addition to the major conversion of areas of woodland,
grassland, and water to cropland, other changes of land-cover
are evident. These include transitions of sparse grass to sand,
woodland and grassland converted to urban areas, and reversals
of these changes in some instances (Figs. 3 and 4).

We considered in detail the changes to areas of cropland and
water between 1987 and 2007 (Fig. 6). During this interval,

areas of cropland expanded mainly along river courses and
showed some contraction in sandy regions. These changes were
the result of two government initiatives: the Sandstorm Source
Control project and the Ecological Migration project. Through
these projects, the families of local herders and farmers were
moved from desertified steppe and ecologically fragile farmland
and settled in new villages which mainly located along river
courses. Over the period from 1987 to 2007, these government
policies led to a reduction in the total area of sand dunes but
also led to an increase in cropland, mainly in lowland areas and
near river banks.

Croplands were developed and later abandoned on some
sandy areas during the period from 1987 to 2007 [Fig. 6(a)].
The main reason for their abandonment was the sandy areas
supported a decreasing yield, which was quickly overtaken
by sand. In areas of increased cropland, rapid shrinkage and
disappearance of water-covered areas occurred [Fig. 6(b)].
During this period, newly opened croplands were distributed
along river banks and in grassland areas and areas of sand dunes
were transformed for small-scale cultivation.

Large areas of irrigated cropland expanded rapidly along river
banks, and even larger areas of irrigated croplands were devel-
oped on river plains where there was access to surface water or
ground water. Consequently, water consumption increased as
the cropland area expanded, thus decreasing the water-covered
area by a factor of around three (from 1.9% in 1987 to 0.6% in
2007). Previous studies have indicated that the major cause of
desertification of the Horqin Sandy Land is a decrease in ground
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Fig. 5. Percentage of the study area covered by each land-cover class in 1975, 1987, 1999, and 2007.

Fig. 6. Changes to the areas of (a) cropland and (b) water between 1987 and 2007. The gray image of panel (b) is a DEM generated from SRTM data.

water levels because of development of croplands on the allu-
vial and flood plains at the margins of desert areas [34].

Changes to land cover also caused a sociocultural transition;
the traditional nomadic lifestyle of the local people was gradu-
ally replaced by an agriculture-based population over the three
decades [6], [7], [9].

Thus, the development of effective land-use practices, grass-
land management, and agricultural management technologies is
crucial if the problems of land degradation and sandstorms in the
Horqin Sandy Land are to be resolved.

V. CONCLUSION

Changes in land cover on the Horqin Sandy Land from 1975
to 2007 were identified and analyzed using Landsat images from
1975 (MSS), 1987 (TM), 1999 (ETM+), and 2007 (TM). ALOS
and SPOT-5 images were used as supplementary data.

From a time series of remote sensing images, we determined
the spatial distribution of nine land-cover classes and obtained
information about temporal changes of land cover. We clearly
demonstrated dramatic land-cover changes over the past three
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decades in the Horqin Sandy Land region. During the rapid in-
crease of human activities since 1975, the dominant changes
were the conversion of grassland and woodland to cultivated
land and shrinkage of areas covered by lakes and rivers. Our
study showed that human activities have transformed a large
proportion of natural landscapes into croplands over the period
from 1975 to 2007. This has led to an increasing shortage of
fresh water and to salinization problems on irrigated land. De-
velopment and implementation of sustainable regional land-use
strategies that are suited to the fragile semi-arid region of the
Horqin Sandy Land is urgently needed. Our study provides a
baseline data set that can be used by researchers and policy
makers to remediate the ongoing desertification of the Horqin
Sandy Land and preserve the essential elements of the Mon-
golian culture of this region. Though outside the scope of this
paper, the rainfall of that specific year probably has a influence
on vegetation cover in this region. Further work needs to include
satellite data with high temporal resolution (e.g., AVHRR and
MODIS, etc.) to analyze the intra- and inter-annual variety of
vegetation cover in this region.
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