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Estimating mangrove forest gross 
primary production by quantifying 
environmental stressors 
in the coastal area
Yuhan Zheng* & Wataru Takeuchi

Mangrove ecosystems play an important role in global carbon budget, however, the quantitative 
relationships between environmental drivers and productivity in these forests remain poorly 
understood. This study presented a remote sensing (RS)-based productivity model to estimate the 
light use efficiency (LUE) and gross primary production (GPP) of mangrove forests in China. Firstly, 
LUE model considered the effects of tidal inundation and therefore involved sea surface temperature 
(SST) and salinity as environmental scalars. Secondly, the downscaling effect of photosynthetic 
active radiation (PAR) on the mangrove LUE was quantified according to different PAR values. Thirdly, 
the maximum LUE varied with temperature and was therefore determined based on the response 
of daytime net ecosystem exchange and PAR at different temperatures. Lastly, GPP was estimated 
by combining the LUE model with the fraction of absorbed photosynthetically active radiation 
from Sentinel-2 images. The results showed that the LUE model developed for mangrove forests 
has higher overall accuracy (RMSE = 0.0051,  R2 = 0.64) than the terrestrial model (RMSE = 0.0220, 
 R2 = 0.24). The main environmental stressor for the photosynthesis of mangrove forests in China was 
PAR. The estimated GPP was, in general, in agreement with the in-situ measurement from the two 
carbon flux towers. Compared to the MODIS GPP product, the derived GPP had higher accuracy, with 
RMSE improving from 39.09 to 19.05 g C/m2/8 days in 2012, and from 33.76 to 19.51 g C/m2/8 days in 
2015. The spatiotemporal distributions of the mangrove GPP revealed that GPP was most strongly 
controlled by environmental conditions, especially temperature and PAR, as well as the distribution of 
mangroves. These results demonstrate the potential of the RS-based productivity model for scaling up 
GPP in mangrove forests, a key to explore the carbon cycle of mangrove ecosystems at national and 
global scales.

Mangrove forest is one of the most carbon-rich ecosystems whose carbon sequestration is considerably higher 
than terrestrial  forests1. The estimate of the gross primary production (GPP) is important to understand the 
carbon cycle in mangrove ecosystems. Carbon flux data measured with eddy covariance (EC) techniques provide 
invaluable information on ecosystem productivities and can be used to establish productivity  models2. However, 
these models were limited to a 0.1–2 km spatial footprint around the towers, and therefore, applying them at other 
sites remains challenging due to the variation of GPP across species, structural features, and latitudinal locations.

Remote sensing (RS) provides the opportunity to characterize the ecosystem structures and environmental 
conditions and therefore, estimate the productivity of the  ecosystems3. The light use efficiency (LUE) model was 
widely adopted to estimate  GPP4,5. Currently, GPP models for terrestrial forest are applicable on a global scale 
(e.g., C-fix, MOD17, and GLO-PEM)6–9, however, production models have not been evaluated and employed 
in mangrove forests in a large scale, mainly due to the lack of understanding of carbon exchange in mangrove 
forests and measurements from flux tower.

Compared to terrestrial ecosystems, mangrove ecosystems are periodically inundated by the tides which 
contribute to the waterlogged and high salinity soil environment. Although mangroves have developed special 
structures or tissues to adapt to such demanding surroundings such as the aerial root, thick canopy, and salt-
tolerance tissues, the environmental stresses remain critical to mangrove productivity. In addition to being 
affected by air temperature  (Tair) and vapor pressure deficit (VPD) as terrestrial  forests10,11, mangrove forests are 
also influenced by the sea surface temperature (SST), salinity, and photosynthetic active radiation (PAR). Firstly, 
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soil temperature affects the roots and aboveground metabolism of  mangroves12. The high soil temperature would 
increase the respiration rate  (Re). To minimize the water loss and energy consumption, the stomatal conduct-
ance within the mangrove would be reduced, which could lower the mangrove light saturation point (LSP) and 
constrain the photosynthesis. The low soil temperature may freeze the water-conducting xylem vessels of man-
grove and therefore limit photosynthetic  activities13. Therefore, apart from  Tair, the soil temperature may exert 
considerable impacts on mangrove photosynthesis. However, soil temperature in mangrove forests is difficult to 
measure due to tidal influence, but it has been reported that soil temperature is mostly related to SST due to tidal 
 inundation12,14. Therefore, SST can be used to represent soil temperature and to investigate its effect on mangrove 
productivity. Secondly, the salinity of surface water and porewater represents a significant control on the man-
grove LUE which is strongly related to the sea surface salinity, rainfall, and river  discharge14,15. The high salinity 
leads to the negative osmotic pressure in the environment of roots which limits the water supply, and therefore 
inhibits the photosynthesis net photosynthetic  rate16,17. Thirdly, the relatively low LSP makes the mangrove easy 
to reach light-saturated  status18. Hence, the high PAR condition would bring excess light absorption and heat to 
the canopy that reduces the LUE of the canopy. These typical environmental stressors are not well understood 
and quantified. Studies have typically focused on the seasonal dynamics and interannual variation of carbon 
fluxes through modeling  GPP18–21 or tidal effects on  CO2 exchange based on in-situ  measurements22–25. Barr 
et al.14 provided a satellite-driven model for estimating  CO2 uptake in mangroves in the Florida Everglades, USA. 
For the first time, the effect of salinity on the mangrove LUE was investigated. Lele et al.26 proposed a vegetation 
photosynthesis model which can be well applied to relatively small-scale mangrove forest by incorporating in-situ 
LUE and high-resolution environmental scalars. However, the LUE models developed in their studies focused 
on the mangrove forests at a local scale, determining environmental parameters based on in-situ measurements. 
It is challenging to apply their models to other regions without continuous measurements.

Currently, there are no RS-based productivity products for mangrove forests globally. Therefore, scaling 
up carbon fluxes from flux tower to national and global scales considering the coastal environment is of great 
importance and challenge. Modeling the GPP of mangrove forests provides the first step in using RS to discover 
the role of mangrove ecosystems in global carbon budgets.

Therefore, the objectives of this study are (1) to improve the LUE model for mangroves considering envi-
ronmental stressors in coastal zone (SST, salinity, and PAR), (2) to estimate the GPP of mangroves in the whole 
coastal zone of China combining flux tower-based measurements and RS, (3) to analyze the spatiotemporal 
distributions of mangrove productivity and the possible affecting factors.

Results
Effects of environmental stressors on mangrove LUE. Maximum LUE  (LUEmax). The maximum 
GPP  (GPPmax) and  Re for two mangrove forests are summarized in Table 1 based on the flux tower data. The 
net ecosystem exchange (NEE)-PAR fitted curves are displayed in Fig. 1. The initial slope of each rectangular 
hyperbola was calculated as the  LUEmax and listed in Table 1. When the  Tair was the most suitable for mangroves 
growth (21–25 °C), the  LUEmax has the highest value (0.057); when the  Tair was high (> 25 °C), the  LUEmax was 
the lowest. We adopted the  LUEmax for mangroves within the optimum  Tair.

Tair scalar and  SSTscalar. The diurnal relationships between GPP and  Tair were similar among four seasons, which 
were displayed in Fig. S1. The GPP typically increased with the increasing  Tair and attained its maximum at noon. 
The highest GPP occurred when the  Tair was around 25 °C, while the lowest  Tair and the highest  Tair were around 
10 °C and 32 °C. The empirical values of  Tmin,  Tmax,  Topt from previous studies were summarized in Table S1. In 
general, mangroves cannot adequately develop when the mean  Tair is below 10 °C, which corresponds with the 
SST around 12 °C during the coldest time of the year. While mangroves are intolerant to freezing temperatures 
below 0 °C for both  Tair and  SST17. Photosynthetic activities of most mangroves are strongly restricted when the 
 Tair exceeds 35 °C27 and SST is over 32 °C. The optimal  Tair is remarkably similar to the previous estimate of about 
28 °C. Based on the literature review and in-situ data analysis, we ultimately adopted 10 °C, 28 °C and 35 °C for 
 Tmin,  Topt, and  Tmax and 12 °C, 24 °C, and 32 °C for  SSTmin,  SSTopt, and  SSTmax, respectively.

VPDscalar. Table S2 lists the VPD values in global mangrove forests from previous studies.  VPDmax in mangrove 
forests ranged from 1.15 to 4.5 kPa, and  VPDmin was around 0.09 to 1.18 kPa. Most mangroves grew properly at 
VPD values of between 0.44 and 1.37  kPa11,28,29, so finally, we adopted the VPD values of 0.6 kPa and 4 kPa as 
 VPDmin and  VPDmax to parameterize the  VPDscalar for mangrove ecosystems.

Table 1.  Parameters of three nonlinear hyperbolic models.

Tair GPPmax Re LUEmax

R2 Number of observations(°C) (μmol/m2/s) (μmol/m2/s) (mol C/mol PPFD)

(a)  ≥ 25 27.13 3.76 0.047 0.39 1893

(b) 21–25 26.12 3.22 0.057 0.55 790

(c) ≤ 21 25.45 2.26 0.055 0.70 1385
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Salinityscalar. Figure S2 compared the RS-based salinity with in-situ salinity and daily rainfall. From this figure, 
we can clearly see that RS-based salinity differed significantly from the measured salinity. Barr et al.30 found 
that the surface water salinities above 28 ppt result in reduced NEE and LUE of mangroves. As the surface water 
salinity is usually lower than the sea water salinity due to the rainfall and river discharge, we assumed that sur-
face water salinity is lower than 28 ppt if the RS-based sea water salinity is below 28 ppt. Therefore, a constraint 
was added to the calculation of  Salinityscalar, which is equal to 1 when the salinity is below 28 ppt.

PARscalar. Barr et al.14 adopted a linear function to account for the photosynthesis saturation in mangrove LUE 
model. We took it as reference and investigated the light saturation effect in mangrove forests. Based on the 
responses of LUE to half-hourly PAR, we found that LUE declined with the increasing PAR as shown in Fig. 2. 
However, the decreasing rates changed with the increase of PAR. When PAR values were less than 1 mmol/
m2/s, the decreasing rate was high. While when PAR exceeds 1 mmol/m2/s, the decreasing rate became lower. 
Therefore, we set the threshold of PAR to get the decreasing rate of  PARscalar. The  mpar for PAR ≤ 1 mmol/m2/s and 
PAR > 1 mmol/m2/s were 0.5171 mmol/PAR and 0.3080 mmol/PAR.

LUE validation. Figure 3 shows the validation results of the terrestrial MOD17 model and mangrove LUE 
model considering coastal environments, with hourly data (Fig. 3a,b) and daily data (Fig. 3c,d). LUE estimated 
by the mangrove model had higher accuracies with lower RMSE. LUE estimated with hourly meteorological data 
exhibited similar results and accuracies with the ones using daily scale data.

Figure S3 assessed the performance of each newly introduced variable on estimating LUE. Results showed 
that the LUE estimated with  SSTscalar and  Salinityscalar maintained low accuracies with RMSE = 0.0185–0.0203, 
 R2 = 0.2264–0.2332, and Pearson’s r = 0.48–0.49. However,  PARscalar performed well in estimating LUE and exhib-
ited a high consistency with the measured LUE (RMSE = 0.0048,  R2 = 0.7147, and Pearson’s r = 0.85).

GPP validation. The validation results for the mangrove GPP model are shown in Fig. 4. The results reveal 
that the GPP has relatively high accuracies with Pearson’s r around 0.5 and RMSE less than 7 μmol/m2/s. The 
GPP estimated was generally lower than the measured value. Figure 5 compares the time-series GPP results from 
MODIS, flux tower measurements, and model estimations. GPP estimated from our model had similar trends 
with the measured values, while MODIS GPP products have larger fluctuance. Modeled GPP had higher accura-
cies compared with MODIS GPP products which improved the RMSE from 39.09 to 19.05 g C/m2/8 days in 2012 
and from 33.76 to 19.51 g C/m2/8 days in 2015.

Figure 1.  The responses of NEE to PAR at: (a)  Tair ≥ 25 °C, (b) 21 °C  <  Tair < 25 °C, and (c)  Tair <  = 21 °C.
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Spatiotemporal distributions of GPP. The seasonal and spatial distributions of GPP along the coastline 
are illustrated in Fig. 6. The overall GPP values were similar in all four seasons, fluctuating between 0.1 and 
0.2 mol/m2/day, with slightly lower values in summer, mostly below 0.1 mol/m2/day, and higher values in spring 
and autumn, with average values around 0.2 mol/m2/day. In winter, GPP values were significantly lower in the 
high latitude zone, mostly below 0.1 mol/m2/day. At low latitudes, GPP increased with the decreasing latitude, 
especially below 20° N, up to 0.25 mol/m2/day.

Figure 2.  The response of LUE to PAR: (a) PAR =  < 1 mmol/m2/s and (b) PAR > 1 mmol/m2/s.

Figure 3.  Validation of LUE estimated from terrestrial (b,d) and mangrove model (a,c) with daily- (c,d) and 
hourly-scale (a,b) data.
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Figure 4.  Validation of modeled GPP with flux-tower data from (a) Zhangjiang (2016–2017), (b) Zhangjiang 
(2012), and (c) Zhanjiang (2015).

Figure 5.  Time-series GPP comparisons among MODIS products, in-situ measurements, and mangrove GPP 
model generated in this study: (a) Zhangjiang (2012) and (b) Zhanjiang (2015).

Figure 6.  Seasonal and spatial variations of GPP in the whole mangrove forests in 2018: (a) spring, (b) summer, 
(c) autumn, and (d) winter (the coastal map was generated by ArcMap 10.8 with the license from Center for 
Spatial Information Science, The University of Tokyo; The China provincial administrative boundary data were 
downloaded from Resource and Environmental Science and Data Center; The mangrove distributions were 
from Zheng and  Takeuchi31).
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Figure 7 displays the spatiotemporal distribution of GPP for 2007, 2010, and 2018. Overall, GPP increased 
from 2007 to 2018, with average values of 0.13 mol/m2/day, 0.14 mol/m2/day, and 0.15 mol/m2/day for 2007, 2010, 
and 2018, respectively. Along the coastline, the spatial variations of GPP were similar. GPP tended to increase 
with the latitude below 22°N, reaching a maximum GPP of about 0.2 mol/m2/day at 18°N.

Discussion
The improved performance of the mangrove LUE model considering coastal environments in this study was 
mainly attributed to the determination of environmental scalars. Parameters determining environmental stressors 
(e.g.,  Topt,  Tmin,  Tmax,  VPDmin, and  VPDmax) were set based on the general characteristics of mangroves worldwide. 
It may not be as accurate for the mangroves in our study sites, but it generally reflects the response of mangroves 
to environmental changes. Furthermore, as can be seen in Fig. S1, it is applicable to our study sites. Despite the 
specific characteristics of each mangrove ecosystem at different sites being preferred,  this study first offers the 
possibility to estimate mangrove productivity at a larger scale to track GPP, thus emphasizing the role of man-
grove ecosystems nationally or worldwide.

Figure 7.  Spatiotemporal distributions of GPP in mangrove forests over China: (a) 2007, (b) 2010, and (c) 
2018.
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The validation results showed that the LUE values of the mangrove model agreed well with those 
estimated by EC method (Fig.  3) and indicated improved performance (slope = 0.8218–1.0108, inter-
cept = -0.0006–0.0052,  R2 = 0.54–0.64, RMSE = 0.0051–0.0068, Pearson’s r = 0.73–1), compared to the MOD17 
model (slope = 0.4993–0.5566, intercept = 0.0311–0.0313,  R2 = 0.24–0.45, RMSE = 0.0217–0.0220, Pearson’s 
r = 0.45–0.49). Firstly, the RS-based LUE model for terrestrial ecosystems (MOD17) considers only the envi-
ronmental stressors of  Tair and VPD. The photosynthesis in mangrove forests is influenced by other unique 
environmental factors caused by tidal inundation. According to Fig. S3, PAR caused the most significant effect 
on LUE, which is consistent with previous  studies14,30,32. The impact of SST has not been quantitatively assessed, 
however, SST is a critical control that determines the upper latitudinal range of mangrove  ecosystems12,33. In our 
study, the effects of SST and salinity on the mangrove LUE were quantified and helped improve LUE modeling.

Secondly,  LUEmax was typically defined for different land covers, however, there were no specific values for 
mangrove forests. In this study, the  LUEmax of mangroves was first determined. It is worth noting that daytime 
NEE responses to PAR vary depending on the  Tair

23,30,34 so that  LUEmax was determined separately at high, 
optimal, and low temperatures. The results showed that  LUEmax reached a maximum when  Tair was within the 
optimal range for mangroves, which represents the high productivity of mangrove ecosystems. Furthermore, the 
estimated  LUEmax of mangrove forests (0.057) was larger than most terrestrial  forests35–37, which could contribute 
to the high production and carbon sequestration in mangrove forests.

Lastly, the relatively low stomatal conductance of mangroves leads to low LSP compared with terrestrial for-
ests, which could result in the high-irradiance stress for  photosynthesis38,39. Mangrove LSP ranges from about 
0.2–1.2 mmol/m2/s, depending on the species and  environments40–42. LUE was relatively low in April and May 
when seasonal PAR was high, as photosynthesis is more likely to reach saturation. Therefore, we assumed the 
LUE of mangroves decreased with increasing PAR. In addition, we found that the downscaling effect of PAR on 
LUE was not constant, but varied with increasing PAR. As follows, different PAR scalars were set for mangroves 
according to different PAR values. This is a first attempt at refining  PARscalar considering different solar radia-
tion, which represents a significant departure from the assumption of a constant downscaling effect of PAR in 
RS-driven  models14,43. The accuracy of the LUE model was improved by refining the  PARscalar with different 
downscaling slopes, especially in periods of high PAR values.

Compared with the results obtained from flux-tower measurements, the modeled GPP was basically within 
the confidence interval of the measured results. The annual averages of GPP in Zhangjiang were 1729 g C/m2/
year and 1924 g C/m2/year, in 2012 and 2016, and the annual mean value of GPP in Zhanjiang was 1434 g C/m2/
year in 2015. The previous study showed that the GPP in Zhangjiang ranged from 1763 to 1919 g C/m2/year with 
a mean value of 1871 g C/m2/year32,44,45, which is in good agreement with the estimated values obtained in this 
study. Liu and  Lai46 reported that the GPP of the Mai Po mangrove reserve was 2827 g C/m2/year. Rodda, et al.20 
found a GPP value of 1271 g C/m2/year for Sunderbans mangroves in India. Gnanamoorthy, et al.47 estimated 
a GPP of 2305 g C/m2/year for Pichavaram mangroves. Variations in these estimates across sites were possibly 
caused by different climate-hydrological conditions, mangrove species, and ages. Differences in the same location 
may be due to different time scales and different methods of data gap filling and flux partitioning.

In a similar way to the GPP model for terrestrial  ecosystems48, the effect of the mangrove GPP model on 
the accuracy of GPP estimates can vary considerably under different environmental conditions. However, in 
comparison with the accuracy of models built for other vegetation types, the GPP model in this study performed 
substantially in two sites with RMSE of 2.54–3.41 g C/m2/day. Wang et al.49 adopted different models to estimate 
GPP for global vegetation and validation results showed the RMSE ranged from 1.79 to 2.33 g C/m2/day. Xiao, 
et al.50 demonstrated that the deviation between observed and predicted GPP was about 35–282 g C/m2 in an 
evergreen needleleaf forest. Also, the absolute GPP errors were 7.94–20.92% and 9.97–13.70% for maize cropland 
and degraded  grassland36. Despite the discrepancy, our results were generally consistent with previous studies 
and were verified by field observations near the flux towers.

The comparison of MODIS GPP and EC-estimated GPP showed that the MODIS GPP had a large fluc-
tuation and weakly reflected productivity, being overestimated in 2012 and underestimated in 2015. Different 
meteorological inputs, different environmental scalars and fraction of absorbed photosynthetic active radiation 
(fAPAR) products in MODIS GPP and our mangrove GPP model can explain their different results. However, 
the improvements in our GPP model may help to obtain more accurate GPP estimates. The response of mangrove 
productivity to  Tair has not been well-calibrated in the MODIS GPP product, which may partly account for the 
poor correlation between the MODIS GPP and EC estimates. Besides, MODIS GPP product was developed based 
on the International Geosphere-Biosphere Programme (IGBP) land cover map, which doesn’t include mangroves 
as a specific land  cover37. Therefore,  LUEmax and environmental parameters were not defined for mangroves, 
which varied with different environments. This may lead to uncertainty in MODIS GPP product for mangrove 
 forests14. However, the GPP model generated in our study showed similar trends to the field measurements, cap-
turing seasonal variations. The increase in the difference between MODIS GPP and EC estimates may be due to 
the assumption that the increase in GPP is linear with respect to PAR. In our model, the response of GPP to PAR 
was suppressed, resulting in seasonal changes in GPP that better match the observations. In addition, the GPP 
derived from this study was in higher agreement with measured values compared with GPP estimated from the 
vegetation photosynthesis model (VPM), as shown in Fig. S4. The improvement of this model was more obvious 
in winter (December to February), which may be due to the environmental stress of SST and PAR. The VPM 
without considering  SSTscalar and  PARscalar overestimated GPP in winter. It is indicated that the performance of the 
mangrove GPP model in this study varied with season. It is recommended to improve the estimation of GPP in 
the future by considering the seasonal variation of mangrove forests when determining environmental variables.

Most studies provide EC-based estimates of GPP that are measurements from a limited footprint. It is possible 
to extrapolate results across similar vegetation types and geographic settings, but not to areas of heterogene-
ous vegetation. The RS-based GPP model offers spatial-scale estimates that can be directly incorporated into 
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ecosystem-type models. PAR, SST, and salinity are the key environmental parameters of this RS-based mangrove 
GPP model. SST and salinity data were derived from the satellite images, while PAR was generated from the 
reconstructed PAR data, since it is more accurate than the existing RS data and has historical year data. However, 
PAR products from Hamawari-8, MERIS, and SeaWiFS are available now, which provide an opportunity to obtain 
large-scale PAR data using RS in the future. In addition to this, GPP of two mangrove forests was assessed and 
validated with three-year measurements. Validation at different sites and years showed similar results, which 
indicated the model has similar performance across mangrove forests. Nonetheless, these estimates need to be 
corroborated with EC databases, which are relatively accurate and provide many additional variables that are 
currently beyond the scope of higher spatial-resolution RS estimates. The proposed GPP model considering 
coastal environments was well suited to extend the study area by incorporating RS information and meteoro-
logical data. Currently, there are still few mangrove carbon flux towers worldwide. The LUE and GPP models 
proposed in this study are difficult to validate with measurements from flux towers in other countries. However, 
local measurements are available in many countries with large mangrove forests, such as Thailand, Vietnam, 
India, and Bangladesh. Therefore, it is expected that comparisons with measurements from previous studies can 
be conducted to show the consistency and applicability.

The LUE model considering the effects of SST, salinity, and PAR performed well, however, the GPP estimated 
from the LUE, fAPAR, and PAR showed discrepancies and were generally lower than the measured values. 
Although the results are better than MODIS GPP products, limitations exist still.

Firstly, the effects of salinity and SST on mangrove productivity were directly related to tidal activities. The soil 
pore water and surface water salinity could affect the osmotic pressure of mangroves especially for the submerged 
parts which would control the stomatal conductance. In the same way, SST could influence the temperature of 
mangrove root systems and soil sediments which has impacts on mangrove roots’ respiration and transpiration. 
Although, theoretically, salinity and SST should be considered as environmental variables affecting mangrove 
LUE, our results (Fig. S3) indicated that salinity and SST have little influence on mangrove  productivity51. To 
date, the quantitative impact of SST has not been comprehensively unfolded, but it is a global control that deter-
mines the upper limit of the latitudinal range of  mangroves12,33. The weak relationships between salinity, SST, and 
mangrove GPP could be due to the uncertainty caused by tidal inundation. Tide duration, tide height, and tide 
cycle would determine the effect of salinity and SST on the mangrove LUE and GPP. However, quantifying the 
influence from the tidal cycle remains a challenging task, which could result in the relatively poor performance 
of  Salinityscalar and  SSTscalar as shown in Fig. S3. Quantifying the soil temperature and surface water salinity con-
sidering the tidal cycle will contribute to model the LUE and GPP of mangrove forests.

Secondly, mangroves of different species and ages exhibit diverse structural and physical conditions, resulting 
in different  LUEmax, and optimal growing conditions such as  Topt and  VPDmin. The environmental settings would 
also vary from region to region. Liu and  Lai46 found that LUE increased slightly with the increasing salinity below 
15 ppt  (R2 = 0.16). However, it was noted that photosynthetic activity of mangroves would be inhibited when 
the surface water salinity was  high30,51–53. Probably, the mutual relationship between LUE and salinity depends 
on the salinity level and mangrove species. However, we have not specified the variables for different mangrove 
species, ages and locations which could be improved in the future. Besides, there are multicollinearities between 
different environmental variables. For example,  Tair may have effects on SST and VPD, but as shown in Fig. S5, 
they are all important for mangrove photosynthesis. However, the correlations between them are not clear and 
need to be quantified in the future.

Thirdly, the relatively low spatial and temporal resolution of the environmental data from RS would influence 
the accuracy of the model. The datasets have a relatively coarse resolution (usually 500 m–1 km and daily) and 
are thereby less suitable for smaller nature reserves, especially in the narrow patches of mangrove areas that are 
rapidly being exploited in coastal China. Moreover, the variability in LUE decreases with increasing temporal 
 scale54. In our study, we determined the  PARscalar based on the response of LUE to hourly-scale PAR and found 
the different down-regulation effects with increasing PAR. However, this phenomenon is not obvious in previ-
ous studies. Most RS-based LUE models were developed at a daily or 8-day temporal  scale6,50,55–57. In terrestrial 
forests, the light saturated effect caused by increasing PAR was neglectable with coarse temporal scale because 
the average PAR was usually lower than the LSP. However, as the time scale increases, the effect of light satura-
tion on LUE becomes more  pronounced32,58,59. More importantly, this effect is more obvious in mangroves due 
to their lower  LSP18,38, which makes it important in mangrove LUE modeling. The results in Fig. 3 show similar 
performances of LUE model on hourly and daily scale. Thus, we suggested that our model can be adopted in 
hourly and daily temporal resolution. However, the  PARscalar developed in this study was based on the mangrove 
forests in one study site which may be influenced by the mangrove species with different LSP and light condi-
tions. What’s more, VPD was on a monthly scale, which cannot reflect environmental dynamics. However, the 
hourly and daily VPD data are currently not available for coastal areas in China. Therefore, we used monthly 
averages to represent daily VPD, which may lead to uncertainty in the derived GPP estimates (Figs. 6 and 7). 
Besides, porewater salinity is controlled by sea surface salinity, precipitation, and river discharge. However, cur-
rently, pore water salinity was expressed in terms of sea surface salinity, which may lead to an underestimation of 
 Salinityscalar. More systematic study is necessary to make it more applicable and accurate on a large scale, of which 
modeling the LUE for different mangrove species and locations is inevitable. However, serving as a fundamental 
and preliminary step, our study aims to provide a framework for RS-based mangrove GPP modeling. Recently, 
with the advancement of satellite imagery, hourly-scale RS data for PAR, temperature and SST are available. It 
can be expected that our current work could be further improved by investigating the light saturation effects in 
different mangrove forests and adopt higher temporal resolution RS products such as Himawari-8 and GCOM-
C in the future.

Lastly, the overall underestimation of GPP was mainly caused by the underestimation of fAPAR. Even though 
the fAPAR computed from Sentinel-2 had higher resolution and accuracy than MODIS fAPAR products, future 
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improvements are still needed. Sentinel-2 fAPAR products (fAPAR-S2) was calculated as the instantaneous 
fAPAR obtained at 10:00 local solar time which only roughly represented the daily average but was not accu-
rate. Besides, RS-derived fAPAR only considers the absorptions by living green vegetation elements, whereas 
the ground measured fAPAR refers to the contributions from all absorbing  components60. The lower fAPAR-S2 
values in mangrove forests may be due to the exposed-to-air root systems which absorb the radiation. Moreo-
ver, the spatial distribution of PAR was determined by Co-Kriging interpolation. The elevation was taken as 
the covariate to estimate spatial PAR. There are many other variables affecting the incoming PAR (e.g., slope 
and clearness)61. A more comprehensive set of variables needs to be included in the Co-kriging interpolation to 
improve the PAR estimation.

The spatial and seasonal variations of the mangrove GPP were related to environmental changes along the 
shoreline. The low summer GPP was explained by the lower fAPAR in summer compared with other seasons, 
which was principally due to the underestimation of fAPAR in summer. Furthermore,  PARscalar took a mean value 
of LSP as 1 mmol/m2/s, however, LSP varied with different species and environmental conditions. In summer, 
mangroves are more likely to obtain light saturation, and thus  PARscalar may lead to an underestimation of LUE 
and thus GPP. On the contrary, PAR values in winter were relatively low but increased slightly with decreas-
ing latitude. Thus, the inhibitory effect of PAR on LUE was not significant, and GPP increased with decreasing 
latitude. Salinity and VPD were more stable across years and locations and had no noticeable effect on the man-
grove LUE and GPP. The seasonal latitudinal patterns and effects on mangrove productivity were similar for  Tair 
and SST.  Tair and SST were lower in winter, especially at high latitudes where mangroves were more sensitive to 
cold weather. Therefore, the GPP of mangroves at high latitudes in winter was the lowest throughout the year. 
However, hot weather in summer also limited the photosynthesis in mangroves, especially at low latitudes, where 
 Tair and SST were higher. Nevertheless, there were some correlations among these environmental constants. For 
example, the  Tair affects the vapor pressure and SST. There was a positive correlation between PAR and  Tair. The 
multicollinearity among these variables and the various conditions of mangroves may affect the performance of 
the model and show variations along the coastline, which would be improved in future studies.

Additionally, the GPP of mangroves increased from 2007 to 2018, which was mainly due to the expansion of 
mangrove forests in the coastal areas. As mangroves grow, canopy size and tree density increase, which may lead 
to higher LUE and less underestimation of fAPAR, thus contributing to high productivity. However, Zhejiang 
province (27° 02′ N–31° 11′ N) experienced extremely cold weather in January 2016 caused by the East Asia cold 
 wave62,63, and large areas of mangrove forests died or became sick, leading to a decline in the mangrove GPP at 
high latitudes in 2018.

Conclusion
In conclusion, we presented a RS-based productivity model to estimate the GPP of mangrove forests in China. 
The model considered the environmental stresses induced by tidal inundation, therefore, involving SST, sea 
surface salinity, and PAR as environmental scalars to develop the LUE model. SST was first-ever included in 
the mangrove LUE model and parameterized by a similar model for  Tair. In addition, it was the first to indicate 
the different downscaling effects of PAR on the mangrove LUE with increasing PAR and determine the  LUEmax 
under different  Tair. Consequently, the mangrove GPP was estimated based on the mangrove LUE model, fAPAR 
generated from Sentinel-2 images and reconstructed PAR from meteorological stations. The results revealed that 
PAR,  Tair, VPD, SST, and salinity are clearly drivers of diurnal and seasonal variations in the mangrove LUE and 
 CO2 fluxes. Among them, PAR, SST, and salinity are unique to mangrove ecosystems. The LUE model developed 
for mangrove forests had higher overall accuracy (RMSE = 0.0051,  R2 = 0.64) than the LUE model (MOD17) for 
terrestrial forests (RMSE = 0.0220,  R2 = 0.24). GPP estimated in this study generally agreed with in-situ measure-
ments from two carbon flux towers. Although there are still limitations, the modeled GPP maintained higher 
accuracies compared with MODIS GPP products. These results demonstrated the potential of RS-driven produc-
tivity models for the large-scale mangrove GPP estimation and provided fundamental data and scientific meth-
odological support for future mangrove blue carbon potential assessment and restoration policy development.

Materials and methods
Study area. Two carbon flux towers have been established in Zhangjiang Estuary Mangrove National Nature 
Reserve (117° 24′ 53.02″ E, 23° 55′ 26.63″ N) in Fujian and Zhanjiang Mangrove National Nature Reserve (110° 
09′ 44.67″ E, 20° 56′ 24.08″ N) in Guangdong (Fig. S6), China. The mangroves in Zhangjiang and Zhanjiang are 
mainly composed of Kandelia obovate and Sonneratia apetala. The forest structures and microclimate in these 
two sites were various and listed in Table S3.

Site-specific data from carbon flux towers. Half-hourly carbon fluxes between the canopy and atmos-
phere were obtained from flux towers and processed by the EC method. Meteorological and tidal information 
was measured with multiple instruments near the flux tower. All data were provided by the ChinaFlux network 
(http:// www. china flux. org). Table S4 summarizes the data availability. More details of the EC system structure 
and data processing can be referred to published  papers18,32.

Remote sensing data. Historical meteorological data were derived from different satellites or based on the 
reanalysis data. The summary of the dataset can be found in Table 2. Meteorological data were obtained from the 
Google Earth Engine platform. Sentinel-2 L1C images were adopted for computing the fAPAR. PAR was derived 
from the reconstructed PAR  dataset64 which was derived from the meteorological data, MODIS AOD data and 
NASA/GSFC  O3 data. Zheng and  Takeuchi31 mapped the mangrove distributions in China for 2007, 2010, and 
2018 which were used to determine the mangrove area.

http://www.chinaflux.org
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Mangrove productivity estimation. LUE modeling. LUE was estimated based on the vegetation type 
and environmental stress as the function of  LUEmax and environmental scalars, which is shown in Eq. (1)43,55,65,66.

where  LUEmax is the maximum LUE,  Tair scalar and  VPDscalar are the down-regulation scalars for the effects of  Tair 
and water on LUE. However, the environmental factors affecting the mangrove photosynthetic metabolism have 
significant differences with terrestrial  forests13,30,67. Although it is hard to isolate individual effects from these 
environmental factors without concurrent photochemical measurements, the diurnal and seasonal changing 
patterns revealed that the temperature  (Tair and SST), PAR, VPD, and salinity represent the controlling factors 
of LUE variations on both diurnal and seasonal scales. Therefore, in this study,  Tair, SST, PAR, VPD, and salinity 
were considered as the environmental stressors for the mangrove LUE and corresponding scalars were defined 
to establish the LUE model, which was proposed as:

where  SSTscalar,  Salinityscalar, and  PARscalar are the down-regulation scalars for the effects of SST, surface water 
salinity, and PAR on the mangrove LUE, respectively. The parameterizations of each environmental scalar are 
explained as follow:

LUEmax. LUEmax describes the maximum efficiency of vegetation for fixing solar energy and is typically related 
to the chlorophyll content, leaf age, species, light intensity, and growth  stages68. The  LUEmax of MODIS GPP/NPP 
Project were derived for 11 biomes including evergreen needleleaf forest, evergreen broadleaf forest, deciduous 
needleleaf forest, deciduous broadleaf forest, mixed forest, closed shrubland, open shrubland, woody savanna, 
savanna, grassland, and  cropland37. However, no existing  LUEmax is available for mangrove forest. We adopted 
the nonlinear hyperbolic model (Michaelis–Menten function) as Eq. (3) to simulate the relationship between 
NEE and PAR which was widely used for terrestrial  vegetations36,55,69.

where  GPPmax is the maximum GPP over a year, and  Re is the ecosystem respiration at night.  LUEmax was deter-
mined by fitting the light response curves (NEE versus PAR) with the daytime half-hourly NEE and PAR values 
from the growing seasons of mangroves (September to February in Zhangjiang). As the responses of NEE to 
PAR were related to  Tair

30,  LUEmax may vary under different  Tair.  LUEmax could reach the maximum when  Tair was 
within the optimal range for mangroves, which represents high productivity of mangrove ecosystems.  LUEmax 
should be relatively low at high and low temperatures. This is mainly because at high and low temperatures, 
mangroves are likely to reduce their stomatal conductance to lessen the transpiration, which may lower their LSP 
and make them more sensitive to solar irradiance. The optimal  Tair for mangroves is 21–25 °C, so we set the  Tair 
ranges as:  Tair ≤ 21 °C, 21 °C  <  Tair < 25 °C, and  Tair ≥ 25 °C.  LUEmax was determined for each temperature range 
and the maximum was adopted for LUE model.

Tair scalar and  SSTscalar. Mangrove photosynthesis is restricted to a certain optimum temperature range for  Tair 
and SST. The low temperature may freeze the water-conducting xylem vessels of the mangrove, and the high 
temperature would reduce the stomatal  conductance13. So, we assumed that the mangrove LUE increases with 
the increase of temperature, however, it will start to decrease after a certain value. Therefore,  Tscalar was defined 
as Eq. (4) which was proposed by Raich, et al.70 for different vegetations.

where  Tmin,  Tmax, and  Topt are minimum, maximum, and optimal air temperatures for the mangrove photosyn-
thetic activities, respectively. If T is below  Tmin,  Tscalar is set to be zero. The daily mean temperature  (Tmean) and 
daily maximum temperature  (Tmax) were employed to calculate the daytime air temperature following Eq. (5)71.

(1)LUE = LUEmax × Tair scalar × VPDscalar

(2)LUE = LUEmax × Tair scalar × VPDscalar × SSTscalar × Salinityscalar × PARscalar

(3)NEE =
LUEmax × PAR × GPPmax

LUEmax × PAR + GPPmax
− Re

(4)Tair scalar =
(T − Tmin)(T − Tmax)

(T − Tmin)(T − Tmax)−
(

T − Topt

)2

(5)T =
(Tmean + Tmax)

2

Table 2.  Summary of the climatic data.

Dataset Spatial resolution Time resolution

Tair ERA5 reanalysis data 0.25° Daily

VPD TerraClimate 2.5 arc minutes Monthly

SST MODIS Aqua data 500 m Daily

Salinity Hybrid coordinate ocean modal (HYCOM) 0.08° Daily

PAR Reconstructed PAR Point data Daily
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Although  Tair scalar was originally developed for the terrestrial forest, Barr et al.14 quantified it in the mangrove 
LUE model. In this study, we adopted the empirical values to estimate the  Tmax,  Tmin, and  Topt and then validated 
them with the GPP-Tair relationship based on the in-situ measurements. The photosynthetic responses of man-
grove to SST are similar to  Tair, so we assume it follows the same function but unique characteristics  (SSTmax, 
 SSTmin, and  SSTopt). Therefore, the scalar for SST  (SSTscalar) was derived in the same way as  Tair scalar.

VPDscalar. VPDscalar is saturated at both maximum and minimum VPD and can be calculated by Eq. (6)37.

where  VPDmax and  VPDmin are the maximum and minimum daytime VPD. If VPD is less than  VPDmin,  VPDscalar 
is set to be 1. If VPD is larger than  VPDmax,  VPDscalar will be set as 0. We determined  VPDmin and  VPDmax by 
summarizing from previous studies and verified with in-situ data.

Salinityscalar. The decline in LUE with increasing salinity was quantified by Eq. (7)14.

where  msal represents the decreasing rate of  Salinityscalar in response to the increasing salinity. The  msal was 
estimated at 0.0047 ± 0.002214. Consequently, we employed  msal as 0.0047 to determine the salinity scalar for 
mangrove ecosystems.

PARscalar. A linear function in Eq. (8)14 was included to reflect the PAR constraint on mangrove LUE. It accounts 
for photosynthesis saturation manifested as declining LUE with increasing PAR.

where  mpar represents the decreasing rate of  PARscalar to the increasing PAR. The  mpar was determined by the 
response of LUE to increasing PAR.

GPP modeling. GPP was calculated as Eq. (9)4,72 and the overall flowchart can be summarized as Fig. 8:

Firstly, the LUE of mangroves in these two mangrove reserves was calculated based on the LUE model pro-
posed before. Resampling of RS data was carried out to keep the spatial resolution at 500 m and the temporal 
resolution at daily. Since SST and salinity were derived from the sea surface, the nearest sea surface pixel to the 
mangrove was adopted to represent the effects of SST and salinity on mangrove LUE.

Then, fAPAR was computed using the biophysical processor in SNAP  software73 by  ANN74–76 trained with 
the RTM  PROSAIL77. The overflow and key parameters for fAPAR estimation were summarized in Fig. S7. The 
processed fAPAR-S2 represents the daily integrated fAPAR values, following the assumption that the instantane-
ous fAPAR value at 10:00 (or 14:00) solar time is close to the daily integrated value under clear sky  conditions78. 
Besides, outlier pixels in fAPAR-S2 were eliminated and only pixels with “QA = 0 0 0” were adopted.

After that, reconstructed PAR data were obtained from 724 meteorological stations provided by Tang, et al.64. 
The PAR data used were validated against PAR data measured in two mangrove reserves, showing good agree-
ment, as displayed in Fig. S8. We further interpolated the PAR data from meteorological stations to the whole 

(6)VPDscalar =
VPDmax − VPD

VPDmax − VPDmin

(7)Salinityscalar = 1− Salinity ×msal

(8)PARscalar = 1− PAR ×mpar

(9)GPP = PAR × fAPAR × LUE

Figure 8.  Overall flowchart of GPP modeling.
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coastal zone by the Co-Kriging interpolation  method79 taking surface elevation as  covariate80,81. Finally, GPP in 
these two mangrove reserves was estimated based on the derived LUE, fAPAR, and PAR.

Model validation and application. The LUE modeled with hourly and daily environmental data were 
validated with LUE values from the carbon fluxes tower in Zhangjiang mangrove reserve. In addition, LUE was 
estimated according to the MOD17 model for terrestrial forests considering only the effects of  Tair and VPD, as 
shown in Eq. (1). Hourly and daily meteorological data were taken as inputs to validate the model on different 
time scales. The experimental results were compared with in-situ LUE to evaluate the performance. GPP esti-
mated using the proposed model was validated with the flux tower measurements. The GPP derived considering 
coastal environments was in turn converted to a cumulative 8-day composite and compared with MODIS GPP 
product at the same  resolution82.

After validation, the GPP model was applied to estimate the GPP of mangrove forests in the whole coastal 
zone of China for the years 2007, 2010, and 2018. Besides, seasonal variations were displayed to reflect the dif-
ferent productivity of mangroves under various environmental conditions.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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