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Improvement of Mangrove Soil Carbon Stocks Estimation in North Vietnam Using 
Sentinel-2 Data and Machine Learning Approach
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Junshi Xia a, Wataru Takeuchi e and Tien Duc Pham b

aGeoinformatics Unit, The RIKEN Center for Advanced Intelligence Project (AIP), Chuo-ku, Tokyo, Japan; bFaculty of Chemistry, VNU University 
of Science, Vietnam National University, Hanoi, Vietnam; cDepartment of Marine Mechanics and Environment, Institute of Mechanics, Vietnam 
Academy of Science and Technology (VAST), Ba Dinh, Hanoi, Vietnam; dFaculty of Fisheries, University of Agriculture and Forestry, Hue 
University, Hue, Vietnam; eInstitute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, Japan

ABSTRACT
Quantifying total carbon (TC) stocks in soil across various mangrove ecosystems is key to under-
standing the global carbon cycle to reduce greenhouse gas emissions. Estimating mangrove TC at a 
large scale remains challenging due to the difficulty and high cost of soil carbon measurements when 
the number of samples is high. In the present study, we investigated the capability of Sentinel-2 
multispectral data together with a state-of-the-art machine learning (ML) technique, which is a 
combination of CatBoost regression (CBR) and a genetic algorithm (GA) for feature selection and 
optimization (the CBR-GA model) to estimate the mangrove soil C stocks across the mangrove 
ecosystems in North Vietnam. We used the field survey data collected from 177 soil cores. We 
compared the performance of the proposed model with those of the four ML algorithms, i.e., the 
extreme gradient boosting regression (XGBR), the light gradient boosting machine regression (LGBMR), 
the support vector regression (SVR), and the random forest regression (RFR) models. Our proposed 
model estimated the TC level in the soil as 35.06–166.83 Mg ha−1 (average = 92.27 Mg ha−1) with 
satisfactory accuracy (R2 = 0.665, RMSE = 18.41 Mg ha−1) and yielded the best prediction performance 
among all the ML techniques. We conclude that the Sentinel-2 data combined with the CBR-GA model 
can improve estimates of the mangrove TC at 10 m spatial resolution in tropical areas. The effectiveness 
of the proposed approach should be further evaluated for different mangrove soils of the other 
mangrove ecosystems in tropical and semi-tropical regions.
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1. Introduction

Mangrove forests in the intertidal zones of the tropical 
and semi-tropical areas are highly productive ecosys-
tems; they provide a wide range of functions and vital 
services to coastal populations such as reducing the 
effects of tsunamis (Danielsen et al. 2005) and mitigat-
ing the damage of tropical cyclones (Mazda et al. 1997). 
These forests can store a significant amount of carbon in 
soil sediments (Donato et al. 2011) and thus are consid-
ered a key component of “Blue Carbon,” which plays an 
important role in mitigating the impacts of global warm-
ing and climate change (Boone et al. 2013; Alongi 2012). 
Understanding mangrove soil carbon stocks plays 
important role in sustainably conserving mangroves 
and protecting these forests from deforestation and 
forest degradation as mangroves have been destroyed 
in the past five decades as a result of human activities, 
rapid urbanization, weak governance, and aquaculture 

overexpansion (Duke et al. 2007; Giri and Muhlhausen 
2008; Sasmito et al. 2019; Friess et al. 2019). In Southeast 
Asia, over 100,000 ha of mangrove forests have been 
lost between 2000 and 2012 (Richards and Friess 2016; 
Hamilton and Friess 2018). The mangrove forest area in 
Vietnam in the early 20th century has decreased drasti-
cally by 400,000 ha (Le Xuan et al. 2003), and in North 
Vietnam, from 1964 to 1997, it decreased by 17,094 ha 
because of the conversion to aquaculture (Pham and 
Yoshino 2016).

Traditionally, the soil total carbon (TC) content of 
mangroves is estimated through soil sample collection 
and laboratory analysis. The straightforward measure-
ments can be accurate; however, they cannot be used 
for large-scale and rapid monitoring of TC during man-
grove conversion processes or mangrove changes 
because they are costly and time-consuming, particu-
larly in mixed and dense mangrove forests. As a result, 
the spatial distribution and reliable statistical data of 
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mangrove TC stocks have rarely been reported in the 
current literature. Many studies have performed soil 
carbon estimation using the optical proximal emersion 
and remote sensing techniques (Gholizadeh and 
Kopačková 2019). The optical proximal emersion tech-
niques consider the applications of different sensors to 
obtain signals from the soil using the sensor’s receiver in 
contact with the soil (Gholizadeh et al. 2018; Gholizadeh 
and Kopačková 2019) and use spectral-based measure-
ments such as earth observation (EO) data. These 
approaches provide cost-effective methods for monitor-
ing dynamic changes in mangrove ecosystems. The 
remote sensing techniques use electromagnetic radia-
tion to obtain information regarding an object such as 
soil type without any physical contact (Jin et al. 2017). In 
other studies, many spectral bands were employed for 
soil carbon estimation using visible-near infrared (VI- 
NIR) and short-wave infrared (SWIR) imaging systems 
mounted on space-borne, airborne sensors, and 
unmanned aerial systems (UAS) (Pinheiro et al. 2017; 
Liu, Min, and Buchroithner 2017; Gholizadeh et al. 
2018; Angelopoulou et al. 2019). Nonetheless, these 
methods produce relatively low performance and can-
not be used for estimating TC on a large scale, resulting 
in the lack of spatial distribution of TC in mangrove 
forests. Thus, accurate, cost-effective, rapid, and nondes-
tructive prediction models that use EO data to estimate 
the mangrove TC across different ecosystems in the 
tropics are needed for sustainable conservation pro-
grams. Such models will support efforts to mitigate 
the impacts of climate change and develop strategies 
for pilot Blue Carbon projects and the Reducing 
Emissions from Deforestation and Forest Degradation 
(REDD+) programs (Pendleton et al. 2012; Ahmed and 
Glaser 2016).

Multispectral EO data have been widely employed 
in monitoring soil carbon because of the advantages 
over proximal and airborne hyperspectral remotely 
sensed data, such as the availability of frequent revi-
sit times and capturing large-scale areas (Gholizadeh 
et al. 2018; Bhunia, Shit, and Pourghasemi 2019; 
Odebiri et al. 2020). Recently, various machine learn-
ing (ML) techniques for mapping and monitoring soil 
carbon stocks in mountainous landscapes and agri-
cultural land using optical space-borne sensors such 
as Landsat 8 OLI (Were et al. 2015; Odebiri et al. 
2020), Landsat 7 ETM+ (Mirzaee et al. 2016), and 
Landsat 4–5 TM (Bhunia, Shit, and Pourghasemi 
2019) have been developed. However, the use of 

multispectral data in the quantitative analysis of 
soil carbon remains challenging due to some limita-
tions associated with the use of satellite sensors to 
capture soil carbon such as atmospheric, radiometric 
corrections, soil moisture, and forest cover 
(Angelopoulou et al. 2019), particularly in mangrove 
ecosystems. Thus, in this study, we developed a pre-
diction model and a novel framework based on 
CatBoost regression (CBR) and genetic algorithms 
(GA), namely CBR-GA, to quantify the total soil car-
bon (TC) content in mangrove ecosystems across the 
northern coast of Vietnam using Sentinel-2 (S-2) 
data.

We selected the CBR model because it is an 
advanced gradient boosting decision trees (GBDT) 
algorithm recently proposed by Prokhorenkova et 
al. (2018) that can handle many features and achieve 
promising results in numerous classification and 
regression tasks in a variety of machine learning 
techniques (Dorogush, Ershov, and Gulin 2018). The 
CBR model has recently been applied as an effective 
method for nonlinear supervised learning problems 
in different domains with noisy labels and complex 
dependencies (Prokhorenkova et al. 2018) such as 
athletes’ gender prediction (Walsh, Heazlewood, 
and Climstein 2019), evapotranspiration (ET) estima-
tion (Huang et al. 2019), and mangrove aboveground 
biomass estimation (Pham et al. 2020b). Despite its 
strong predictive performance and robustness, the 
CBR model has never been used for retrieving man-
grove TC stocks. We hypothesize that the CBR algo-
rithm may be useful for estimating mangrove TC due 
to the unique characteristics of mangrove soil prop-
erties. Furthermore, the ability of existing GBDT algo-
rithms for estimating mangrove TC stocks has not 
been quantitatively evaluated in the current litera-
ture. More importantly, a quantitative comparison of 
the GBDT algorithms and traditional well-known ML 
algorithms for the mangrove TC stock retrieval at 
different mangrove ecosystems has not yet been 
reported. Investigation of advanced GBDT techni-
ques for mangrove TC retrievals using free-of-charge 
EO data is often required to achieve up-to-date man-
grove TC stock maps in the tropics to assist in mon-
itoring, reporting, and verification (MRV) schemes in 
climate change mitigation strategies. Thus, this 
study aims to fill these gaps in the literature by 
combining the CBR model with a genetic algorithm 
(GA) and comparing the performance of the CBR-GA 
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model with other GBDT algorithms. Our results 
demonstrate the capability of the proposed method 
in estimating mangrove TC stocks and improving the 
mangrove soil carbon estimations toward achieving 
sustainable development goals (SDGs) in the tropics. 
To our knowledge, this is the first attempt to esti-
mate the mangrove TC stocks at 10 m spatial resolu-
tion on a large scale using EO data from many soil 
samples in different mangrove ecosystems in North 
Vietnam. The results will provide a baseline and pro-
mote the effective implementation of monitoring, 
reporting, and verification (MRV) as part of the 
REDD+ and Payment for Ecosystem Services (PES) 
strategies. Consequently, the results will provide 
insights for developing regional and national Blue 
Carbon trading markets and guiding sustainable 
mangrove conservation in tropical and semi-tropical 
regions.

2. Materials and datasets

2.1. Study area

This study was conducted in mangrove ecosystems 
across four coastal provinces in North Vietnam, namely, 
Nam Dinh, Thai Binh, Hai Phong, and Quang Ninh 
(Figure 1). The geographical coordinates are 19°30ʹ– 
21°30ʹ north latitude and 106°01ʹ–108°00ʹ south long-
itude. The study areas are located in the western 

coastal zone of the Gulf of Tonkin. Among four coastal 
regions, the Xuan Thuy National Park is located in Nam 
Dinh Province, which is the first wetlands site of inter-
national importance (RAMSAR) in Vietnam built in 1982 
(Leslie et al. 2018). Mangrove forests of the former 
three coastal provinces belong to the Red River Delta 
biosphere reserve, which has suitable sediment condi-
tions, mainly silty-clay soils accumulated from the 
Hong and Thai Binh rivers for mangrove ecosystem 
development. In Quang Ninh Province, soil sediments 
are shallow and mainly associated with parental lime-
stones. The climate of the four study sites belongs to 
sub-tropical and semi-tropical monsoon with two sea-
sons. The dry season is from November to April, and 
the rainy season is from May to October (Veettil et al. 
2019). The average temperature is 23°C, annual rainfall 
is 1300–1400 mm, and humidity is about 80% (Li et al. 
2006). The mangrove ecosystems in the present study 
are diverse and distributed between zones I and II 
among the four Vietnamese mangrove zones 
(Nguyen and San 1993), which are the second largest 
mangrove forests in the country.

The mangrove ecosystems comprise the mangrove 
forests and the adjacent intertidal area. There are 
about 10 mangrove species found in the coastal 
zones, the most dominant of which are Sonneratia 
caseolaris, Kandelia obovata, Bruguiera gymnorrhiza, 
Avicennia marina, Rhizophora stylosa, and Aegiceras 
corniculatum (Nguyen 2004).

Figure 1. Map of the study area across mangrove ecosystems in North Vietnam.
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2.2. Earth observation data acquisition and image 
processing

2.2.1 Earth observation data collection and image 
processing
Sentinel-2 (S-2) multispectral imaging (MSI) data were 
used for retrieving mangrove TC in four provinces 
(Table 1).

The Sentinel-2 Level-1 C imagery was acquired 
from the Copernicus Open Access Hub (https://sci 
hub.copernicus.eu) of the European Space Agency 
(ESA) in November and December 2018 when the 
field survey was conducted during the dry season in 
North Vietnam. The S-2 images were geo-coded in 
UTM/WGS84, Zone 48 north projection at top of 
atmosphere (TOA) reflectance (Drusch et al. 2012). 
The S-2 Level-1 C data were processed to Level-2A 
data at the bottom of atmospheric (BOA) correction 
using the ESA’s Sen2Cor algorithm http://step.esa.int/ 
main/third-party-plugins-2/sen2cor/. All the S-2 
images that include multispectral bands were 
resampled to a ground sampling distance (GSD) of 
10 m. The Python environment was employed for 
machine learning modeling while the SNAP Sentinel 
Application Platform toolbox and QGIS were used for 

processing the S-2 data. The modeling was performed 
using Scikit-learn in Python 3.7 environment.

2.2.2. Image transformation of Sentinel-2 imagery
Image transformation techniques for multispectral 
data have been commonly and frequently employed 
to map and predict forest soil carbon in previous 
studies (Gholizadeh et al. 2018; Yang et al. 2016; 
Were et al. 2015; Bhunia, Shit, and Pourghasemi 
2019). The most common transformation techniques 
applied to optical data are the vegetation and soil 
radiometric indices because each index may have a 
strong correlation with different soil properties such 
as soil moisture, color, and texture (Gholizadeh et al. 
2018). In the present study, we selected eight vegeta-
tion indices and three common soil radiometric 
indices presented in Table 2 for a TC retrieval model 
because they are widely employed for retrieving for-
est biophysical parameters in tropical areas reported 
in previous studies (Manna et al. 2014; Wu et al. 2016; 
López-Serrano et al. 2016; Gholizadeh et al. 2018; 
Richardson et al. 2017). A total of 22 variables, includ-
ing 11 multispectral bands from S-2 MSI, 8 vegetation 
indices, and 3 soil radiometric indices were computed 
as predictor variables for TC retrieval and used to 
construct the model and verify model performance.

Spectral surface reflectance values of multispectral 
bands and vegetation indices together with soil radio-
metric indices derived from the S-2 images were 
extracted for each soil sampling plot (Table 2). Since 
the sampling plot size was 100 m2, we resampled all 
the spectral bands of the S-2 data to a ground sam-
pling distance (GSD) of 10 m.

Table 1. Earth observation data acquisition used in this study.
EO 
sensor

Date of acquisition 
(mm/dd/yyyy) Tile ID

Processing 
level

Multispectral 
band used

Sentinel- 
2A

11/02/2018 48QXH 1 C 11 bands

Sentinel- 
2B

11/27/2018 48QZJ
12/17/2018 48QYJ
12/17/2018 48QXJ

Source: ESA, 2019.

Table 2. Vegetation and soil radiometric indices used in this study.
Vegetation index Acronyms S-2 wavelengths used References

Ratio vegetation index RVI NIR
Red

(Tucker 1979)
Normalized difference vegetation index NDVI NIR� Red

NIRþRed
(Rouse et al. 1974)

Green normalized difference vegetation index GNDVI NIR� Green
NIRþGreen

(Gitelson, Kaufman, and Merzlyak 
1996)

Enhanced vegetation index-2 EVI-2 2:5 NIR� Red
NIRþ2:4Redþ1

� �
(Jiang et al. 2008)

Normalized difference index using bands 4 &5 of S-2A NDI45 RE1� Red
RE1þRed

(Delegido et al. 2011)
Soil-adjusted vegetation index SAVI 1þ Lð Þ NIR� Red

NIRþRedþL

� �
L = 0.5 in most conditions (Huete 1988)

Inverted red-edge chlorophyll index IRECl RE3� Red
RE1=RE2

(Frampton et al. 2013)

Modified chlorophyll absorption in reflectance index MCARI [(RE1 – Red) – 0.2 x (RE1 – Green)] * (RE1 – NIR) (Daughtry et al. 2000)
Brightness index BI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Red�Redð Þþ Green�Greenð Þ

p

2
(Escadafal 1989)

Redness index RI Red�Red
Green�Green�Green

(Mathieu et al. 1998)
Color index CI Red� Green

RedþGreen
(Mathieu et al. 1998)

Central wavelengths of S-2A and S-2B bands: B3: Green (560 nm), B4: Red (665 nm), B5: Red-edge 1 (RE1) (704 nm), B6: Red-edge 2 (RE2) (739–741 nm), B7: Red- 
edge 3 (RE3) (780–783 nm), B8: near-infrared (NIR) (833 nm), B8A: Narrow-NIR (864–865 nm), B11: short-wavelength infrared (SWIR1) (1610–1614 nm), and 
B12: SWIR2 (2186–2202 nm).
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In this study, we proposed a novel framework for 
mangrove TC retrieval using ML techniques and S-2 
MSI data as shown in Figure 2.

3. Methods

3.1 Soil sample collection and total soil carbon (TC) 
stocks analysis

Soil carbon was collected from the mangrove sediments 
during the dry season in November and December 
2018. Four coastal provinces across various mangrove 
ecosystems in North Vietnam were included in the ana-
lysis because they represent estuarine, fringing, and 
island mangroves. Field surveys of total soil carbon 
(TC) were carried out, and a total of 177 soil cores 
were collected; each core consisted of 2–4 layers 
depending on the soil characteristics of each study 
site. At each site, soil cores were collected to a depth 
of 100 cm in an undisturbed area of the center of each 
sampling plot at the lowest tidal level in the mudflat 
using an Eijkelkamp gouge auger. We used the Garmin 
eTreX Global Positioning System (GPS) with an accuracy 
of ± 2 m to record the location of the sampling plot.

Soil core samples were sectioned into different 
layers from the surface (0–15 cm, 15–30 cm, 30– 
50 cm, and 50–100 cm) as proposed by Kauffman 

and Donato (2012). Then, all samples were stored in 
polythene bags and preserved in a cooler box before 
being transferred to the laboratory for analysis. Soil 
samples were dried at 40°C for 72 h and then disin-
tegrated and homogenized using an agate mortar 
and pestle before being passed through a 0.1 mm 
sieve. For TC measurements, the dried soil samples 
were correctly weighed using a ceramic boat and an 
analytical balance. Subsequently, each soil sample 
was covered with a ceramic fiber lid (Pham, Yoshino, 
and Bui 2017). Then, the samples were placed into the 
loading position and measured using the manual 
mode at 900°C.

The TC stock of the mangroves was quantified by 
multiplying the dry bulk density (BD) by the TC con-
tent (%) at a depth interval (Kauffman and Donato 
2012). The BD was calculated using the ratio of the dry 
mass per volume of the wet sample (Eq. 1). 

TC ¼
Xn

i¼1

αik xi; xð Þ þ b (1) 

The TC stock per sampled depth interval was then 
obtained by using Eq. 2. 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1

yi
^
� yi

� �
2

n

v
u
u
u
t (2) 

Figure 2. Methodological framework proposed for TC retrieval in mangrove ecosystems using machine learning techniques and S-2 
MSI data.
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The TC content was analyzed via the combustion 
method using a non-dispersive infrared (NDIR) sensor 
and a TC analyzer (Shimadzu TOC-VCPH connected the 
solid sample module SSM 5000A) to detect CO2 

(Schumacher 2002). The replicated measurements of 
the standards at different concentrations were used 
to obtain a standard deviation of <10%. A total of 652 
soil samples were analyzed for all mangrove ecosys-
tems in North Vietnam. The certified reference mate-
rials (CRM) of marine sediments (MESS-3) were also 
examined to validate the accuracy of the methods 
used. All measurements of the samples based on the 
TC standard method were analyzed at least three 
times to achieve a standard deviation of within 10% 
(Table 3). 

R2 ¼ 1 �

Pn
i¼1 yi� y

^

i

� �2

Pn
i¼1 yi� y

�� �2 

3.2. Generation of training and test datasets

After finalizing the soil carbon analysis, we sum-
marized the soil carbon data for different soil 
layers to obtain the total mangrove soil carbon 
stocks (TC) for each core soil (Kauffman and 
Donato 2012). A total of 177 soil cores were ran-
domly split into training (80%) and testing (20%) 
datasets. The former dataset was used to model 
the relationship between the TC and the predictors 
derived from the S-2 data, vegetation indices (VIs), 
and soil radiometric indices (SIs), whereas the latter 
dataset was used to evaluate the predictive perfor-
mance of the ML models developed. In the present 
study, we selected the gradient boosting decision 
trees (GBDT) technique, i.e., CatBoost regression 
(CBR), extreme boosting regression (XGBR), light 
gradient boosting regression (LGBR), and the well- 
known algorithms such as support vector regres-
sion (SVR) and random forest regression (RFR) for 
benchmark model comparison. All predictor vari-
ables were normalized using the normalization 
function in Scikit-learn library in Python 3.7 
(Pedregosa et al. 2011).

3.3. Machine learning algorithms

3.3.1. Extreme gradient boosting (XGB)
The XGB is a supervised learning algorithm that can 
solve a range of data science problems as a fast and 
accurate technique (Chen and Guestrin 2016). The 
XGB algorithm is a relatively new technique that 
belongs to the family of gradient boosting machine 
learning models (Chen and Guestrin 2016). The algo-
rithm can handle both classification and regression 
tasks for weak supervised learning through additive 
training strategies. The XGB technique aims at over-
coming the over-fitting problem and optimizing the 
performance, and it has recently become a winner in 
many machine learning competitions (Nielsen 2016; 
Pham et al. 2020a).

In the XGB benchmark, the process of additive 
learning is divided into two phases. The first learning 
phase is fitted to the entire input data, whereas the 
second one is fitted to the residuals for solving the 
drawbacks of the weak supervised learning algo-
rithms. The fitting process is repeated several times 
until the stopping criteria are achieved. The XGB algo-
rithm requires many hyperparameters, which must be 
selected and tuned beforehand. In the present study, 
we calculated the optimal hyperparameters in Python 
3.7 with the grid search and five-fold cross-validation 
(CV) function.

3.3.2. Light gradient boosting machine (LGBM)
The LGBM is an algorithm that belongs to the gradi-
ent boosting decision trees (GBDT) family, which was 
proposed by Microsoft MSRA (Ke et al. 2017). LGBM is 
an efficient GBDT technique, which has been used in 
solving different classification, regression, and sorting 
problems (Ma et al. 2018; Sun, Liu, and Sima 2018). 
There are two phases in the LGBM algorithm: gradient 
boosting and exclusive feature bundling. In the LGBM 
regression (LGBMR) model, trees grow vertically, 
whereas in other GBDT-based models such as XGBR, 
trees grow horizontally, which makes the LGBMR 
model is an effective, practical, and faster method 
with low computational cost in processing large- 
scale data, compared to XGBR (Ke et al. 2017).

Table 3. Total carbon (TC) of the certified reference materials (CRM) of marine sediments (MESS-3) and TC from experimental 
measurements.

TC measurement SD TC-standard %Difference

2.2 0.02 2.0 9.4

6 T. D. PHAM ET AL.



In the LGBMR benchmark, the prediction perfor-
mance can be significantly influenced by hyperpara-
meters. Therefore, before applying LGBMR, we 
determined the range of variations in the hyperpara-
meters to perform the computation using the grid 
search with five-fold CV in Python 3.7 environment.

3.3.3. CatBoosting regression (CBR)
CBR is a novel gradient boosting decision tree algorithm 
recently proposed by Yandex and can handle data with 
categorical features and minimize the over-fitting pro-
blem by selecting the best tree structure for calculating 
the leaf values (Dorogush, Ershov, and Gulin 2018). The 
CatBoost model is a powerful machine learning techni-
que recently released as an open-source library. This 
algorithm achieves excellent empirical results in both 
classification and regression problems by implementing 
ordered boosting, which is a modification of standard 
GBRT algorithms (Prokhorenkova et al. 2018). In the 
CatBoost regression (CBR) model, random permutations 
of the training dataset and the gradients used for choos-
ing an optimal tree structure are generated to enhance 
the robustness of the algorithm and prevent overfitting 
(Dorogush, Ershov, and Gulin 2018).

The learning efficiency of the CBR algorithm is 
controlled by its model hyperparameters including 
max depth, learning_rate, and the number of itera-
tions. The selection of the optimal hyperparameters is 
challenging and time-consuming depending on the 
user’s experience. Thus, in the present study, we pre-
sented a GA to automate the search of the hyperpara-
meters and a number of optimal features with five- 
fold CV to improve the model performance.

3.3.4. Random forest (RF)
The RF is a well-known ML algorithm developed by 
Breiman (2001) and widely applied to classification and 
regression problems. This algorithm begins with a range 
of bootstrap samples (ntree) from the original dataset 
and then different predictors (mtry), which are randomly 
sampled, and operates in the training phase where each 
ntree creates a regression tree and the algorithm 
chooses the best split among many variables. The RF 
algorithm creates multiple uncorrelated trees for train-
ing, using a random subset of two-thirds of all the 
samples and leaves one-third of the samples (out-of- 
bag) for validation. The samples are randomly collected 
with replacement in numbers of collection. A tree is 
grown using in-bag samples with m variables to 

optimize the finest split for each node. Then, the tree 
can grow to the largest extent in the case of no pruning. 
The model produces (1) the out-of-bag error and (2) the 
variable importance to evaluate the accuracy of the 
prediction and indicate the contribution of each vari-
able. The random forest regression (RFR) model is a well- 
known method for non-parametric and non-linear data 
and has been widely used in forest above-ground bio-
mass (AGB) estimation (Pham, Lien and Lars 2017; 
Silveira et al. 2019) and in soil carbon retrievals 
(Richardson et al. 2017).

3.3.3. Support vector regression (SVR)
The support vector machine (SVM) was introduced by 
Vapnik (2013) and adopts the statistical learning the-
ory and the kernel-based approach. The SVM algo-
rithm can handle non-linear data and solve 
classification and regression tasks. The key benefit of 
support vector regression (SVR) is that it can produce 
high prediction accuracy with a small number of 
training samples (Mountrakis, Jungho, and Ogole 
2011). The SVR is used for TC prediction as follows: 

AIC ¼ n � logð
SSE

n
Þ þ 2K (3) 

where k (xi; x) is the kernel function, xi represents the 
training vector, α is the Lagrange multiplier, and b is 
the regression bias.

The quality of mangrove TC retrieval is evaluated 
using the ε-insensitive loss function developed by 
Vapnik (2013). The performance of the SVR model is 
highly influenced by the selection of the kernel func-
tions. To minimize the bias, the radial basis function 
(RBF) kernel was used in this work as the SVR, which is 
the most commonly used regression technique for 
the retrieval of forest biophysical parameters (Wu et 
al. 2016; Vafaei et al. 2018; Pham et al. 2018). In this 
study, optimal hyperparameters for implementing the 
SVR model were determined by the grid search with 
the five-fold CV method using Scikit-learn in Python.

3.4. Genetic algorithm (GA) for optimal feature 
selection

Optimal feature selection using the GA was imple-
mented to automatically identify the optimal vari-
ables for mangrove soil carbon retrieval in the study 
area. The GA applies the idea from Darwin’s theory of 
evolution for natural selection by employing the 
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computer capacity to automate the tuning of a num-
ber of parameters of an ML model (Davis 1991). The 
most important concept of the GA is the chromo-
some, which consists of ML model parameters to 
define a solution (called individual).

The basic operation performed during the train-
ing of the CBR-based model consists of the follow-
ing steps: (1) a total number of 177 soil cores 
(individuals) are initialized to form a population, 
(2) individuals with the highest fitness values are 
selected to generate a mating pool, (3) from the 
mating pool, parents are selected using either 
sequential or random selection methods, and (4) 
several operators called crossover and mutation 
are then applied to each pair of parents to generate 
their offspring. This process keeps high-quality indi-
viduals to generate more individuals and evolves to 
obtain the desired solutions.

In this work, we first tested the ML models with all 
the features (predictor variables) with hyperparameter 
tuning using grid search with five-fold CV. Based on the 
highest predictive performance i.e. the lowest root- 
mean-square error (RMSE), we selected the best ML 
model for mangrove soil carbon retrieval. Then, we 
used the GA with the best predictive model to select 
the optimal features with a combination derived from 
the S-2, VIs, and SIs data for the mangrove soil carbon 
stock estimation. Finally, we tested all the selected ML 
models with optimal features for comparison.

3.5. Model performance evaluation

We employed root-mean-square-error (RMSE) and 
coefficient of determination (R2) for model assess-
ment and comparison of different ML techniques in 
TC retrieval because these statistical indices are the 
most commonly utilized ones in any regression pro-
blem to evaluate the discrepancies between the 
measurements (the TC field-based measurements) 
and the predicted TC data (Were et al. 2015; Yang 
et al. 2016)

RMSE (Eq. 4) and R2 (Eq. 5) values are considered as 
standard criteria for measuring errors or biases of ML 
regression tasks. Higher R2 and lower RMSE values 
often represent the better regression model 
(Jachowski et al. 2013; Pham, Yoshino, and Bui 2017). 

BIC ¼ n � logð
SSE

n
Þ þ log nð Þ � K (4) 

BD g cm� 3� �
¼ dry mass gð Þ½ �= wet sample volume cm3� �� �

(5) 

where ŷi and yi are the estimated and measured man-
grove soil carbon for the ith plot, respectively; n is the 
total number of sampling plots, and ӯ is the measured 
mean values of the mangrove soil carbon stocks.

In the current work, we employed the Akaike’s 
Information Criterion (AIC) and the Bayesian 
Information Criterion (BIC) to determine which regres-
sion model gives the most accurate TC estimates among 
different machine learning methods because they have 
been widely used for selecting and comparing different 
regression models (Claeskens and Hjort 2008; Pham, 
Yoshino, and Bui 2017). Both the AIC and the BIC pro-
vide effective methods for choosing the best regression 
models. The model shows lower AIC and BIC values 
indicated a better-fitting model (Burnham, Anderson, 
and Huyvaert 2011; Pham, Yoshino, and Bui 2017).

We calculated the AIC and the BIC values using (Eq. 
6) and (Eq. 7). Models were ranked from the lowest to 
the highest AIC and BIC scores; the model with the 
lowest AIC and BIC values was considered the best. 

TC stock Mg TC ha� 1� �
¼ BD g cm� 3� �

� TC %ð Þ

� depth interval cmð Þ

(6) 

BIC ¼ n log
SSE

n

� �

þ log nð Þ � K (7) 

where SSE is the sum of squares errors, n is the num-
ber of sampling plots, and K is the number of para-
meters; K = p + 1 where p is the number of predictors.

4. Results

4.1. Results of the field survey

4.1.1. Characteristics of total carbon stocks 
measured in soil of the study area
The characteristics of the TC stocks of 177 soil cores 
consisting of 2–4 layers in four coastal provinces 
(Nam Dinh, Thai Binh, Hai Phong, and Quang Ninh) 
are shown in Table 4 and Figure 3. The mean values 
of the TC stocks varied between 38.07 and 
210.17 Mg ha−1, with the highest mean TC observed 
in Hai Phong (121.33 ± 43.16 Mg ha−1), followed by 
Thai Binh (92.14 ± 26.41 Mg ha−1), Nam Dinh 
(84.45 ± 24.12 Mg ha−1), and Quang Ninh 
(78.12 ± 33.28 Mg ha−1). The mean TC was the 
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lowest in Quang Ninh but it was not much different 
from those in Nam Dinh and Thai Binh while the 
mean TC stock in Hai Phong was the highest. We 
observed richer soil in the lower 50 cm and in all the 
sedimentary cores of TC in mangrove ecosystems. 
The mean soil carbon stocks down to 100 cm in the 
study area range from 78.12 to 121.33 Mg C ha−1 

(Table 4).

4.1.2. Variations in total carbon stocks in soil
The variations in TC stocks in the mangrove soil 
strongly depend on depth (Figure 3). The TC stocks 
of the soil in the depth of 0–15 cm changed slightly 
compared to those in the other depths. Total TC in the 
depth of 0–15 cm is relatively higher than in the other 
depths, except for 50–100 cm. It is noted that the 
depth of 50–100 cm is the most important layer, 
which consists of a large amount of the total carbon 
stocks in a soil core.

The TC stocks in Nam Dinh indicate a decreasing 
trend from 0–15 and 15–30 cm to the deeper layers. 
Nevertheless, TC content increases slightly from 15– 
30 cm to 50–100 cm. The trends in the TC content in 
Quang Ninh are similar to those in Nam Dinh 
although TC in 50–100 cm is much higher than in 
Nam Dinh. The TC stocks in Hai Phong are the most 
complicated. The TC content decreases significantly 
from the bottom of the core to 30–50 cm. Then, TC 
decreases slightly from 30–50 cm to 15–30 cm before 
it dramatically fluctuates up to the surface layer 
(Figure 3).

(X-axis: the number of soil cores, Y-axis: mangrove 
soil carbon: additive carbon for four depths)

Correlation analysis of variables and measured TC

Table 5 shows that among 11 multispectral bands, the 
vegetation red-edge band 5 (703.8–704.1 nm) 

Table 4. Characteristics of mangrove TC stocks in the study site.
Depth 

(0–15 cm) 
(Mg ha−1)

Depth 
(15–30 cm) 
(Mg ha−1)

Depth 
(30–50 cm) 
(Mg ha−1)

Depth 
(50–100 cm) 

(Mg ha−1)
Total TC 

(Mg ha−1)
Mean total TC 

(Mg ha−1)

Nam Dinh 6.20–48.40 0–26.06 0–38.08 0–47.92 6.20–128.64 84.45
Thai Binh 8.48–41.37 11.59–52.38 0–81.61 0–76.1 45.6–161.64 92.14
Hai Phong 10.70–57.16 4.54–33.47 10.62–48.93 0–103.55 38.07–210.17 121.33
Quang Ninh 6.32–42.81 5.43–38.01 0–39.13 0–70.89 14.15–160.33 78.12

Figure 3. Downcore variations in mangrove sediment properties at 100 cm depth.
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showed the strongest correlation with mangrove soil 
carbon, followed by the red band (664 nm) and the 
green band (559 nm). In addition, two SWIR bands 
(1610–2202 nm) showed relatively strong correlations 
with soil carbon. Several new vegetation indices 
derived from the S-2 data i.e., IRECl and MCARI 
showed relatively strong correlations with mangrove 
soil carbon content. Strong negative correlations 
were observed between three soil radiometric indices 
(BI, RI, CI) and mangrove soil carbon stocks (Table 5).

4.3. Modeling results, assessment, and comparison

We computed and tested four scenarios (SC) using the 
S-2 imagery, VIs, and SIs in the training and testing 
phases. The optimal number of features was achieved 
by using 16 variables in SC2 including 10 multispectral 
bands, 3 vegetation indices (SAVI, MCARI, EVI-2), and 3 
soil radiometric (BI, RI, CI bands) (Table 6). The CBR-GA 
model in SC2 yielded the best prediction performance 
in terms of R2 and RMSE. The proposed model shows 
satisfactory results with R2 value of 0.665 and RMSE of 
18.41 Mg ha−1.

Overall, our proposed model performed well and 
outperformed other ML techniques (XGBR, LGBMR, 
SVR, and RFR) in the study area (Table 7 and Figure 4). 
The CBR-GA model produced the highest prediction 
performance among the five ML models, with 
R2 = 0.665 and RMSE = 18.41 Mg ha−1 (Table 7). 

Conversely, the SVR model yielded the lowest perfor-
mance, with R2 and RMSE values of 0.180 and 28.79 Mg 
ha−1, respectively. In addition, the AIC and the BIC values 
of the CBR-GA model were lowest among the five ML 
models (AIC = 241.75 and BIC = 267.08) whereas these 
corresponding numbers were highest observed by the 
SVR model (AIC = 273.91 and BIC = 299.25).

(a) CBR, (b) XGBR, (c) LGBMR, (d) RFR, (e) SVR

4.4. Mangrove TC maps

Since the proposed model outperformed other ML 
models in retrieving TC, we employed the CBR-GA 
model for estimating the TC of the mangrove ecosys-
tems across the northern coast of Vietnam. The final 
results were converted to the GeoTiff format to visualize 
in the QGIS. The TC maps were interpreted for six classes 
(Figure 5), ranging from 35.06 to 166.83 Mg ha−1 

(average = 92.27 Mg C ha−1) and the highest soil carbon 
was found in the Red River Delta, which contains three 
coastal provinces (Nam Dinh, Thai Binh, and Hai Phong) 
and the lowest soil carbon was observed near the sea 
and the mountainous limestone areas of Quang Ninh 
Province (Figure 1). The results reveal that the estima-
tion of the spatial distribution of the TC generated by 
the CBR-GA model is consistent with the actual mea-
sured mean (~91.01 Mg ha−1). However, the TC range 
was lower than the actual distribution range (Table 3). 

Table 5. Pearson’s correlation analysis of multispectral bands, 
spectral indices, and measured TC in training phase.

TC vs. 
input variable

Correlation 
coefficient (r)

TC vs. input 
variable

Correlation 
coefficient (r)

Band 1 −0.203 RVI 0.265
Band 2 −0.269 NDVI 0.244
Band 3 −0.341 GNDVI 0.244
Band 4 −0.296 NDI45 0.090
Band 5 −0.429 SAVI 0.167
Band 6 −0.047 EVI2 0.161
Band 7 0.014 IRECl 0.165
Band 8 0.082 MCARI −0.145
Band 8A 0.038 BI −0.333
Band 11 −0.154 RI −0.262
Band 12 −0.190 CI −0.218

Central wavelengths of S-2A and S-2B bands: B1: Coastal aerosol (442– 
443 nm), B2: Blue (492 nm), B3: Green (560 nm), B4: Red (665 nm), B5: 
Red-edge 1 (RE1) (704 nm), B6: Red-edge 2 (RE2) (739–741 nm), B7: Red- 
edge 3 (RE3) (780–783 nm), B8: near-infrared (NIR) (833 nm), B8A: Narrow- 
NIR (864–865 nm), B11: short-wavelength infrared (SWIR1) (1610– 
1614 nm), and B12: SWIR2 (2186–2202 nm). RVI: ratio vegetation index; 
NDVI: normalized difference vegetation index; GNDVI: green normalized 
difference vegetation index; EVI-2: enhanced vegetation index-2; NDI 45: 
normalized difference index using bands 4 &5 of S-2; SAVI: soil-adjusted 
vegetation index; IRECl: inverted red-edge chlorophyll index; MCARI: mod-
ified chlorophyll absorption in reflectance index; BI: brightness index; RI: 
redness index; CI: color index.

Table 6. Model performance of the CBR technique in testing 
phase.

Scenario 
(SC) Number of features

R2 

testing 
(20%)

RMSE 
(Mg 

ha−1)

SC1 11 features from MS bands 0.327 31.39
SC2 16 optimal features from feature selection 

using the GA 
(10 MS bands + 3 vegetation indices + 3 soil 
radiometric indices)

0.665 18.41

SC3 19 features (11 MS bands + 8 vegetation 
indices)

0.438 22.67

SC4 22 features (11 MS bands + 8 vegetation 
indices + 3 soil radiometric indices)

0.616 19.69

Table 7. Machine learning models’ performance for the TC 
retrieval of mangrove ecosystems.

No. Machine learning model

R2 

testing 
(20%)

RMSE 
(Mg 

ha−1) AIC BIC

1 CatBoost regression with GA 
(CBR-GA)

0.665 18.41 241.75 267.08

2 Extreme gradient boosting 
regression (XGBR)

0.610 19.85 243.37 270.53

3 LightGradient Boosting machine 
regression (LGBMR)

0.595 20.21 248.45 273.79

4 Random forests regression (RFR) 0.588 20.39 252.33 277.67
5 Support vector regression (SVR) 0.180 28.79 273.91 299.25
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The estimated TC of mangrove forests was mainly dis-
tributed in the high tidal zones of the river mouth and 
the core zone of the RAMSAR site. The predicted TC 
results matched the field observations, reflecting that 
the river deltas are the most suitable areas for mangrove 
regrowth and regeneration.

5. Discussion

5.1. Variations of mangrove TC stocks

The mean mangrove TC stocks ranged between 
78.12 Mg ha−1 and 121.33 Mg ha−1 (Table 4). 

These numbers were lower than 
159.45 ± 3.96 Mg C ha−1 in the mangrove area 
but higher than 87.59 ± 1.08 Mg C ha−1 in the 
bare sediment reported in Nam Dinh Province by 
Hien et al. (2018), owing to the large spatial varia-
bility in mangrove soil carbon in four provincial 
zones. In the mangrove zone, the TC content was 
low, ~1.66%, in the upper 50 cm, compared to 
~2.2% reported by Kristensen et al. (2008). Our 
results are almost similar to those reported by 
Tue et al. (2012) in Xuan Thuy National Park in 
Nam Dinh Province. The TC content in Nam Dinh 

(a) (b)

(c) (d)

(e)

R2: 0.665 
RMSE: 18.41 

R2: 0.610 
RMSE: 19.85 

R2: 0.596 
RMSE: 20.21 R2: 0.588 

RMSE: 20.39

R2: 0.180 
RMSE: 28.79

Figure 4. Scatter plots of the measured (X-axis) versus the estimated (Y-axis) mangrove soil carbon in the five ML models using S-2 
data in the testing phase.
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varied from 0.08% to 2.18%, with an average of 
1.09 ± 0.32% for the mangrove core zone, while in 
the other zones, such as buffer and transition 
zones, the TC content was lower.

We observed the highest TC content in mangrove soil 
in the lower depth layers ranged from over 50 cm, which 
is consistent with the results reported by (Donato et al. 
2011). Intertidal mangrove expansion causing soil 
enrichment in TC may influence soil characteristics. 
However, mangrove TC stocks strongly depend 
on depth and ecosystem locations. The TC stocks in 
Nam Dinh indicate a decreasing trend from 0–15 and 
15–30 cm to the deeper layers. Nevertheless, TC content 
increases slightly from 15–30 cm to 50–100 cm. The TC 
stocks in Nam Dinh are in good agreement with the 
reported results in previous studies (Tue et al. 2018). It is 
noted that other results in Hai Phong, Thai Binh, and 

Quang Ninh have not been reported yet in the current 
literature. This is the first time the TC values of mangrove 
ecosystems in the remaining provinces (Hai Phong, Thai 
Binh, and Quang Ninh) in the Northern coast of Vietnam 
were reported. Our results may be an important indica-
tor to understand the current status of soil carbon stocks 
in these coastal provinces to assist the sustainable man-
grove conservation and management in the tidal areas.

5.2. Model results and significant contributions to 
the literature

Our proposed model shows an R2 value of 0.665 and an 
RMSE value of 18.41 Mg ha−1, indicating a satisfactory 
result compared to the previous studies that estimated 
soil organic carbon using S-2 data (Angelopoulou et al. 
2019) and mapped the mangrove forest soil carbon 

(a () b) 

(c () d) 

Figure 5. Prediction of spatial patterns of mangrove soil carbon maps in the study area. (a) Nam Dinh – Ramsar site, (b) Thai Binh, (c) 
Quang Ninh, (d) Hai Phong
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stocks (Sanderman et al. 2018). Prior studies attempted 
to develop statistical models for retrieving the soil car-
bon stocks using space-borne EO data such as Landsat 
TM (Bhunia, Shit, and Pourghasemi 2019), Landsat ETM+ 
(Mirzaee et al. 2016), Landsat-8 OLI (Were et al. 2015; 
Odebiri et al. 2020), and Sentinel-2A (Gholizadeh et al. 
2018; Castaldi et al. 2019). A recent work conducted in 
four agricultural sites in the Czech Republic using S-2A 
combined partial least square regression (PLSR) and SVR 
models, whereas a more recent study attempted to 
predict soil carbon in croplands in European countries 
using the S-2 data with the RF model, indicating the 
potential use of S-2 data for soil carbon estimation. 
However, the R2 values of these studies were not 
reported (Gholizadeh et al. 2018; Castaldi et al. 2019). 
Our results show that the use of the S-2 space-borne 
free-of-charge multispectral sensor combined with the 
state-of-the-art CBR-GA model can improve estimates of 
mangrove TC stocks at 10 m spatial resolution and 
produce high prediction performance.

Remarkably, our proposed model result is relatively 
higher than that of a study on mapping the mangrove 
soil carbon using the RFR algorithm (R2 = 0.63) 
(Sanderman et al. 2018). This study used the initial 
mangrove organic carbon stocks (OCS) derived from 
the SoilGrid 250 m as the most important indicator 
and resampled to 30 m GSD to meet the Landsat 
bands for the prediction model (Sanderman et al. 
2018). The study reported by Sanderman et al. (2018) 
did not consider specific depth intervals and their cor-
responding bulk density (BD) values, which can only be 
obtained by soil sample collection, and used an existing 
soil database with low spatial resolution, resulting in 
errors. Our prediction results were derived based on 
the field survey measurements in four depth layers 
and intensive laboratory analysis combined with the S- 
2 free-of-charge data and a state-of-the-art ML techni-
que. Therefore, our proposed model and framework 
(Figure 2) may provide an effective, timely, and rapid 
approach in monitoring mangrove blue carbon and in 
promoting global policy implementations for long-term 
mangrove conservation and restoration in the context 
of nature-based solutions to climate change impacts.

5.3. Variable importance for the use of 
multispectral remote sensing

Overall, vegetation indices and soil radiometric indices 
derived from Sentinel-2 MSI are more sensitive to 

mangrove TC stocks than those of band reflectances in 
this study. One possible reason is that the mangrove 
soils are generally wet, which might dominate the soil 
reflective signals. Among 11 multispectral bands of S-2 
data, Band 3 (Green) and Band 5 (Red-edge 1), followed 
by Band 11 (SWIR1) and Band 12 (SWIR2) play an impor-
tant role in mangrove soil carbon retrieval (Figure 7(a,b)) 
caused by the strong absorption features of different 
soil types at NIR-SWIR spectra due to bending and 
stretching of the O-H and N-H groups, and C-H bonds 
(Ben-Dor, Inbar, and Chen 1997; Ben-Dor and Banin 
1995). The findings are in agreement with those of the 
previous studies (Gholizadeh et al. 2018) and (Liu, Min, 
and Buchroithner 2017), reflecting that shortwave infra-
red spectra are sensitive to soil properties such as soil 
carbon content. Soils having dark hues associated with 
alluvium or sediments for similar moisture and parental 
materials may have large carbon contents than soils 
with pale hues or sand of parental limestone materials 
(Gholizadeh et al. 2020). Note that different mangrove 
soil colors were measured at four depth intervals and 
different geographic locations in four coastal provinces 
in North Vietnam (Figure 6). We observed dark soils, 
which mostly come from silty-clay sediments with high 
carbon content collected at the mangrove areas near 
the Red River Delta (Figure 6(a,c)) whereas pale hues 
and gray sandy soils with low carbon content were 
collected near the sea mouth or the parental limestone 
materials (Figure 6(b,d)).

Mangrove soil carbon content is sensitive to var-
ious vegetation indices (VIs) and soil radiometric 
indices (SIs). All eight VIs and three SIs contribute 
significantly to the proposed model performance for 
estimating mangrove TC stocks. The SAVI, the MCARI, 
and the EVI-2 were consistently the most important 
indices when retrieving mangrove TC stocks with the 
CBR model with all features and the CBR-GA model 
with optimal features (Figure 7(a,b)). The SAVI showed 
a significant correlation to mangrove TC stocks. Our 
results were consistent with the findings reported by 
Wang et al. (2020) and Odebiri et al. (2020) for esti-
mating soil carbon stocks of forest ecosystems in 
China and South Africa, implying that the SAVI may 
be useful for estimating mangrove TC in other man-
grove ecosystems. The new vegetation index (MCARI) 
derived from the S-2 data is the most sensitive index 
to the mangrove soil carbon content in the study area. 
This index may be useful for TC estimation in other 
mangrove ecosystems in the tropics. The IRECl was 
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Figure 6. Mangrove soil colors measured at four depths and different locations in the study area. (Note: Figure 6(a,c): Dark hue soils 
collected at the mangrove near the river deltas, Figure 6(c,d): pale hues and sandy soils collected near the sea mouth or parental 
limestone materials). Photos were taken by T.T.T. Nguyen.

ba

Figure 7. Relative variable importance in percentage of features derived from the S-2 data. (a) All features (b) optimal features. 
Variable index and band range abbreviations as in Table 5.
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strongly correlated with mangrove TC stocks using 
the CBR model with all features (Figure 7a). Our results 
show that among three soil radiometric indices, BI 
was strongly correlated with mangrove soil carbon, 
reflecting the potential indicators for mangrove soil 
carbon retrieval. Similar observations were reported 
by Gholizadeh et al. (2018). The BI soil radiometric 
index is the most important variable, followed by 
the RI and the CI for the mangrove TC retrieval in 
the study area (Figure 7(a,b)).

5.4. Factors influencing accuracy and 
transferability of mangrove soil carbon estimation 
models

Mapping the spatial distribution of mangrove species 
plays a vital role in identifying high carbon sequestra-
tion in both above and below ground. This would be a 
key step in recommending the policymakers on which 
species needs to conserve and to help identify dis-
turbed sites where it can be restored (Wu et al. 2020). 
The generation of mangrove communities spatial dis-
tribution and the estimation of their total C budget 
using multispectral remote sensing data are highly 
necessary to recognize and protect the high carbon 
storage values of areas and to help identify disturbed 
sites where can be restored, locations of areas may be 
threatened, thus promoting Blue Carbon projects in 
supporting sustainable conservation strategies in 
dealing with climate change impacts (Macreadie et 
al. 2019). The accuracy of mangrove soil carbon esti-
mation models may improve when considering the 
spatial distribution of mangrove communities as one 
of the key features. Further research should focus on 
mapping the mangrove tree species on a large scale 
using multisource remote sensing data to improve 
estimates of mangrove soil carbon stock retrieval.

Transfer learning has widely used for image recog-
nition and computer vision (Pan and Yang 2010; 
Oquab et al. 2014; Hu et al. 2015). Recent studies 
attempted to map soil properties using multisource 
data such as hyperspectral and the LUCAS database 
consisted of topsoil layer at 0–30 cm depth (Liu, Ji, 
and Buchroithner 2018; Padarian, Minasny, and 
McBratney 2019; Yang et al. 2020). Several studies 
proposed deep neural network models to transfer 
soil reflectance spectrum into regression models aim-
ing at reducing the high dimensionality of hyperspec-
tral data and reduce computation time (Liu, Min, and 

Buchroithner 2017) and applying deep learning 
neural networks for local soil spectroscopy (Padarian, 
Minasny, and McBratney 2019; Yang et al. 2020). 
These studies pointed out the superior performance 
of the transfer-based models using transfer learning 
techniques and Convolutional neural networks (CNN) 
combined with recurrent Neural Networks (RNN) for 
predicting soil properties using Vis-NIR spectroscopy. 
However, deep learning and transfer learning meth-
ods in remote sensing often require many soil sam-
ples. It is noted that there was no existed soil carbon 
at a high spatial resolution of 10 m for various man-
grove ecosystems across tropical and semi-tropical 
regions. Thus, in-depth investigations using transfer 
learning and deep learning neural networks using 
large-scale earth observation data should be tested 
in future studies.

5.5. Policy recommendations for successful BC 
projects

Our results provided up-to-date data on mangrove 
soil carbon stocks and mapped the spatial distribu-
tions of mangrove TC along the coastal zones in North 
Vietnam using free-of-charge space-borne multispec-
tral data and the state-of-the-art machine learning 
technique, which is highly necessary to identify and 
rank hotspots representing priority areas for man-
grove conservation. The prediction of spatial man-
grove distribution maps (Figure 5) shows that 
mangrove TC stocks of the Ramsar site in Xuan Thuy 
National Park, Nam Dinh Province are relatively low 
compared to those of the three provinces in North 
Vietnam, requiring policy-relevant solutions and 
actions from local governments for better manage-
ment, restoration, and protection of mangrove blue 
carbon ecosystems of the National Park.

Importantly, our method developed in this study is 
significantly contributed to the current literature as a 
novel framework and a baseline to rapidly and cost- 
effectively monitor mangrove BC ecosystems and can 
be easily replicated in different mangrove forest areas 
in the tropics. Further in-depth investigations that will 
apply the proposed method to other mangrove eco-
systems should be evaluated at large scales and under 
different geographical soil characteristics in the tro-
pics. These studies will be required in assisting blue 
carbon offset schemes by voluntary carbon credits 
and payments (Macreadie et al. 2019) as many 
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countries and national agencies currently lack regio-
nal blue carbon storage and sequestration reliable 
data (Vanderklift et al. 2019).

6. Conclusions

Our work is the first study that employed the 
Sentinel-2 MSI data together with a novel boosting 
technique, i.e., the combined CBR model and the GA, 
to estimate total soil carbon (TC) across the man-
grove ecosystems of four coastal provinces in North 
Vietnam. Our findings show that the CBR-GA model 
outperforms other machine learning techniques in 
the retrieval of mangrove TC. In addition, the three 
GBDT models (CBR, XGBR, and LGBMR) showed satis-
factory performance in terms of R2 and RMSE and 
produced better prediction results than the SVR 
model in the study area. This work also demon-
strates that a combination of Sentinel-2 data and 
certain vegetation indices, particularly a new MCARI 
derived from S-2, and soil radiometric indices with 
the CBR model can accurately estimate mangrove TC 
(R2 = 0.665, RMSE = 18.41 Mg ha−1). Satellite image 
processing and the programming code in Python 
language developed in the current study can be 
freely accessed. Therefore, the method developed 
in this study can be easily replicated in different 
mangrove forest areas in the tropics. Further in- 
depth investigations that will apply the proposed 
method to other mangrove ecosystems should be 
evaluated at large scales and under different geo-
graphical soil characteristics in the tropics.

Highlights

● A novel framework using S-2 MSI data and ML for mangrove 
soil carbon was proposed.

● This is the first study that employed the S-2 data to estimate 
mangrove soil carbon in Vietnam.

● S-2 combined with the CBR-GA model outperformed other 
machine learning techniques.

● S-2 provides large spatial coverage for mangrove soil 
assessment in the tropics.
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