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A B S T R A C T   

For sustainable food production in the Mekong Delta, local information on irrigation status is essential for 
allocating water resources efficiently at the community level. ALOS-2 PALSAR-2 L-band SAR can be used to 
detect submerged and nonsubmerged soil covered by rice plants at a spatial resolution compatible with field 
observation but a low temporal resolution. In this study, a new multiscale data assimilation technique is 
developed to estimate the spatiotemporal dynamics of field water levels at a temporal resolution appropriate to 
inform decision-making on when to initiate irrigation. The method employs an irrigation model based on pa-
rameters representing farmers’ irrigation practices. ALOS-2 PALSAR-2 data are used to derive the hydrological 
parameters of the model, including an irrigation parameter representing how deep the field water level dropped 
until the next round of irrigation was initiated. We developed observation operators for the soil submersion 
status under vegetation and spatial submersion percentages instead of assimilating soil moisture products. The 
study uses ALOS-2 PALSAR-2 data (25–100 m spatial resolution, approximately every 42 days) over the Mekong 
Delta and experimental data collected in situ for model initialization and validation. The estimated irrigation 
parameter controlling the maximum depth of field water level showed spatio-temporal consistency with the 
ground-observed value (RMSE = 4.24 cm). The values of the parameters also showed spatial consistency with 
respect to DEM data; he paddies with low irrigation model parameter values were prone to be located in low- 
elevation zones (<2 m), whereas high model parameters values tended to be located in paddies in the high- 
elevation zones (>3 m).The results show promising applications using L-band SAR observations for moni-
toring paddy field water level, for irrigation practices and for estimation of the water consumption and of 
methane emissions.   

1. Introduction 

The objective of this study is to develop a SAR-based monitoring 
system that provides daily paddy field water level data for irrigation 
management, required in the simulation of GHG emissions and rice 
productivity. In Asia, rice is the most important staple food, providing an 
average 32% of total calorie uptake (Maclean et al., 2002). About 90% of 

the global paddy area and annual output of rice production are 
concentrated in monsoonal Asia (FAOSTAT, 2022). Approximately 75% 
of global rice production is produced in irrigated lowlands encompass-
ing delta basins in Asia, such as the Mekong, Irrawaddy, Chao Phraya, 
and Bengal Rivers (Barker et al., 1985; Maclean et al., 2002). To meet 
the increasing food demand derived from global population growth, rice 
cropping in the region is becoming more intensive with the use of 
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double/triple rice cropping techniques (FAO, 2020). However, rice 
production requires large amounts of water (3000–5000 L kg− 1 rice, 
IRRI, 2001) and has become a major source of the potent greenhouse gas 
methane, approximately 11% of anthropogenic methane emissions 
come from rice paddy submerged soils (IPCC, 2013). Therefore, water- 
saving irrigation practices that have the potential to mitigate methane 
emissions by oxidizing the soil environment, such as alternate wetting 
and drying (AWD), are desirable for dissemination in this region to 
ensure sustainable water demand while lowering greenhouse gas 
emissions. 

AWD is an intermittent irrigation technique to lower the amount of 
water used for irrigation without a significant loss of rice productivity 
(Bouman et al., 2007; Lampayan et al., 2015). This approach consists of 
temporarily suspending irrigation until the paddy soil becomes dry/ 
oxidized. Initially, irrigation water is applied to obtain flooded condi-
tions (5–10 cm of water above the soil surface). Then, after a certain 
number of days have passed, the field water level drops below the soil 
surface. The next irrigation is scheduled before the soil becomes dry. 
However, the perception of soil dryness and consequently the number of 
days between 2 irrigations varies widely among farmers and sites (from 
1 day to >10 days) depending on the soil texture (clay/silt/sand con-
tent), percolation rate, precipitation and evaporation (Bouman et al., 
2007, Lampayan et al., 2015). Various soil drought indexes have been 
used for scheduling irrigation (Bouman et al., 2007); for example, the 
soil matric potential is used to define the value of the soil drought index 
as the irrigation criterion. Scientists have also advocated for the use of 
the farmer-determined water level has also been suggested (hereafter 
referred to as Dbefore_irrigation, i.e., how deep the field water level drops 
before the next round of irrigation is initiated). This specific water depth 
has been widely used by policy makers regarding irrigation activity, as 
rice farmers can easily monitor this value (Bouman et al., 2007; Rejesus 
et al., 2011). To define Dbefore_irrigation, several field experiments have 
been conducted in Asia (e.g., Arai et al., 2021; Belder et al., 2004; 
Bouman and Tuong, 2001; Lampayan et al., 2015). These studies report 
that increasing the interval between rounds of irrigations to allow the 
field water level to drop to deeper soil layers is a promising technique to 
save water, reduce methane emissions and increase rice yield in the 
Mekong Delta (Arai, 2022). ‘Irrigation when the field water level has 
leached 15–20 cm below the soil” is the criterion suggested by the In-
ternational Rice Research Institute (IRRI). In Vietnam, in particular the 
Mekong delta, highly intensive cropping system was developed based on 
the construction and upgrading of a multilevel dike system, allowing 
double and triple rice crop per year. The AWD practices have also been 
adopted in certain regions as a water saving regulation. 

However, despite the wide adoption of AWD, the values of Dbefor-

e_irrigation differ by location (Ishido et al., 2016; Taminato and Matsubara, 
2016). Most importantly, the adoption of AWD by farmers is constrained 
by several social/infrastructural factors. These factors include distance 
from the irrigation canal/drainage, density of subcanals inside the dikes, 
and location of pump ownership (Yamaguchi et al., 2017). At such 
community scale (i.e., 10-100 m spatial resolution with daily temporal 
resolution), heterogeneity is caused by nonsynchronized intermittent 
drainage in adjacent rice paddies, in land surface elevations and in 
cropping calendars (Dang et al., 2016; Evers and Benedikter, 2009, 
Miyashita et al., 2016). Other natural factors arise, such as irregular 
daily field water level dynamics of the irrigation canal due to ebbs and 
flows of tides (Wassmann et al., 2004). 

These heterogeneous water management practices cause difficulties 
in monitoring/verifying mitigation measures operations (e.g., AWD). 
Such monitoring is required for irrigation management, such as alloca-
tion of irrigation/drainage canals and pumping apparatuses for irriga-
tion/drainage schedule synchronization, opening/closing schedules of 
water gates attached to each dike surrounding rice paddies, dike 
heightening, selection of paddies that require field water level obser-
vations, etc. 

In this context, there is a need to monitor the irrigation status [i.e., 

field water level dynamics and farmers’ irrigation practices (e.g., Dbe-

fore_irrigation)] to evaluate the actual dissemination status of water-saving 
irrigation activities by each stakeholder and verify the longevity of 
already implemented mitigation measures. To address this issue, various 
studies have been conducted using remote sensing techniques to eval-
uate the soil submersion status. Using optical data, the rice paddy 
covered with water can be distinguished at the beginning of the season 
based on the reflectance of the water surface. The method often uses the 
normalized difference water index (NDWI) and the normalized differ-
ence vegetation index (NDVI) from remote sensing images to depict the 
differences between rice paddies and nonrice paddy areas (Zhang et al., 
2020). However, as soon as the rice paddy is covered by vegetation, it is 
no longer possible to detect flooded and nonflooded paddy fields. Using 
SAR data with penetration capability, soil submersion/nonsubmersion is 
expected to be detectable in rice paddies for a longer period during the 
rice growth stage, depending on the SAR wavelength. Using C-band SAR 
data, Lam-Dao (2009) reported that soil submersion could be detected 
up to 20 days after sowing using the HH backscattering intensity of 
Advanced Synthetic Aperture Radar (ASAR). Using longer-wavelength 
SAR data with deeper penetration in the vegetation layer, Arai et al. 
(2018) demonstrated the performance of quadruple/dual-polarimetric 
L-band SAR (ALOS-2 PALSAR-2: Advanced Land Observing Satellite-2/ 
Phased Array type L-band Synthetic Aperture Radar-2) data to distin-
guish submerged paddies and nonsubmerged paddies across all rice 
growth stages. However, the high resolution polarimetric images cover 
limited area (40 km swath) and irregular temporal frequency. For larger 
region, ScanSAR data are more adapted. However, the 42-day repeat 
cycle by which PALSAR-2 ScanSAR data are acquired is not sufficient to 
monitor the temporal dynamics of paddy field water levels. Future L- 
band SAR missions, such as ALOS-4, ROSE-L and NISAR, will have 14- 
and 12-day repeat cycles, respectively, will be still not sufficient for 
temporal monitoring. Many hydrological simulation studies (e.g., Al- 
Yaari et al., 2014; Ines et al., 2013; Montzka et al., 2011) applying data 
assimilation (hereafter, assimilation) have used high temporal resolu-
tion passive microwave radiometer data [e.g., Soil Moisture and Ocean 
Salinity (SMOS), in which the L-band (1.4 GHz) data are collected every 
3 days]. However, their spatial resolution of 20–50 km is not adapted to 
the heterogeneity of the rice paddies in Asia. In this regard, it is very 
important to develop a technique using high spatial resolution SAR data 
at low temporal resolution to simulate the temporal dynamics of the 
irrigation status of rice paddies. 

The objective of this study is to develop a system that provides daily 
field water level data for irrigation management at the community scale. 
The starting point is the use of ALOS-2 PALSAR-2 data which provide 
pixel-based information on submersion status of paddy fields every 42 
days. We prepared a model simulating field water level dynamics, based 
on knowledge of the hysteresis of the soil water retention curve and our 
long-term ground observation data. and we use the SAR data to optimize 
model parameters. To estimate the values of Dbefore_irrigation at the com-
munity scale, we assimilate the backscattering coefficient of the ALOS-2 
PALSAR-2 data by preparing a pixel-based observation operator to 
detect the submersion status of paddy fields. To solve the filter diver-
gence issues that become critical due to the low temporal resolution of 
satellite observations, we designed a focal statistics-based observation 
operator to evaluate the temporal submersion percentage and the spatial 
submersion percentage in a focal analysis window. 

2. Methodology 

In field water level simulation at local scale, soil properties and 
farmers’ irrigation practices need to be considered. Unfortunately, most 
models simulating hydraulic states of agricultural soils require the field 
water level data as “forcing” input data (e.g., “depth of water retention 
layer” as input data of DNDC-rice model: Fumoto et al., 2008; Soil, 
Water, Atmosphere and Plant model: Govindarajan et al., 2008). The 
difficulty is mainly due to large uncertainties linked to anthropogenic 
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activities (e.g., irrigation/drainage schedule, management of tidal irri-
gation dikes, cropping calendars). In addition, perturbation of the 
ground water table caused by irregular dynamics of tidal movement of 
the canals also contribute to uncertainty (Arai et al., 2022; Hong et al., 
2014). However, because most paddy soils over the delta are heavy clay 
soils characterized by a low percolation rate (Dang et al., 2016; Evers 
and Benedikter, 2009; Ishido et al., 2016), the soil-matric potential is 
expected to be the major factor controlling the states of soil water 

energy. Therefore, it is expected that realistically simulating irrigation 
status is still possible by parameterizing these local soil properties with 
ground observation data relating on field waterlevel dynamics. The 
model is then run by assimilating SAR data simultaneously to adapta-
tively optimize the parameters representing irrigation practices through 
the simulation on every pixel. 

As the common water management practice in the region, soil water 
saturation was maintained for one week after sowing, and the paddies 

Fig. 1. Graphical explanations of the estimated model parameters by data assimilation, including Dbefore_irrigation, are depicted in subfigure (a) and the flowchart 
outlining the different steps of the study (b). The purple box indicates ground data collection. The green box indicates the data assimilation processing. The blue box 
indicates the model simulation. Details of each procedure are described in the Methodology subsections. Subfigure (a) illustrates a sample of observed field water 
level dynamics consisting of 4 typical patterns (I-IV): (I) soil water saturation management: water level is above 0 cm; (II) continuously inundated: water level is 
simulated higher than 0 cm above the soil surface; (III) intermittent irrigation after submerged status (i.e., saturated soil): temporal dynamics of field water level 
shows an upward convex pattern with a slow dropping rate due to soil water desorption (shown as a bold blue line); and (IV) intermittent irrigation after non-
inundated status (i.e., unsaturated soil): temporal dynamics of field water level shows a downward convex pattern with fast dropping rate due to soil suction (shown 
as a bold red line). Two model parameters representing irrigation practices (i.e., Dbefore_irrigation and Hafter_irrigation; unit: cm) for pattern (III) are illustrated. These 
illustrations will also be further explained in the Subsection 2.2. The boxes with broken lines in subfigure (b) are illustrations of an example of the submerged/ 
nonsubmerged rice paddy map (top right), the analysis window (top left) and the simulated pixel-based map of the field water level (bottom). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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were then flooded for one week to prevent weed germination. Irrigation 
practices consist in supplying water to a level of approximately 5 cm 
above the soil. In continuous flooding (CF) paddies, irrigation is 
repeated to maintain the 5 cm water level. In the AWD paddies, irriga-
tion was halted 2 weeks after sowing until the next fertilization time or 
until the water levels in the paddies dropped to a 15-cm depth. During 
the flowering period (10 days from the heading date, the first day when 
5% of the total number of spikes have headed), the field was maintained 
under continuous flooding to prevent spikelet sterility. Finally, most 
paddies were drained 2–3 weeks before the rice is harvested. 

To realize stable L-band SAR data assimilation for field water level 
simulations and parameter optimization, several difficulties derived 
from the unique characteristics of ALOS-2 PALSAR-2 ScanSAR obser-
vations at 42-day observation repeat must be resolved: (1) the need to 
consider local irrigation activities (2) the low temporal resolution of 
satellite data (3) the need to estimate field water level for each pixel, 4) 
the development of a robust uncertainty quantification scheme. 

To satisfy these conditions, the data assimilation system develop-
ment was conducted following 5 key steps: (1) preparing a high 
spatiotemporal resolution model and its SAR data assimilation module,; 
(2) developing observation operators for soil submersion maps derived 
from L-band SAR data to update not only relatively short-term “fast” 
state variables (i.e., field water level in this study) but also long-term 
“slow” model parameters representing farmers’ irrigation practices; 
(3) applying a local particle filter with an adaptive model parameter 
optimization scheme (4) comparison of the estimated model parameters 
and updated state variables with ground-observed data at each region of 
interest (ROI). A flowchart of this study is illustrated in Fig. 1. 

2.1. Site description and ground data collection 

We prepared ground observation datasets obtained at six sites (A-E) 
located in six different districts in the VMD (Appendix A, Fig. S1). Site A 
is located in Can Tho Province, and sites B-E are located in An Giang 
Province. The sites have been studied in previous research works: Site A: 
Thot Not, Can Tho [10◦10′N, 105◦33′E; Arai et al., 2015; Arai et al., 
2018; Hong et al., 2014, Arai et al., 2021, 2022, Arai, 2022]; Site B: 
Chau Thanh [10◦16′N, 105◦08′E; (Ishido et al., 2016; Taminato and 
Matsubara, 2016)]; Site C: Cho Moi [10◦25′N, 105◦27′E; (Ishido et al., 
2016)]; Site D: Thoai Son [10◦16′N, 105◦08′E; (Ishido et al., 2016)]; and 
Site E: Tri Ton, An Giang [10◦23′N, 105◦05′E; (Ishido et al., 2016)]. The 
soil at all sites is alluvial soil; classified as silty clay fluvisol at site A-C, 
while the soil at sites D and E is classified as sulfuric humaquepts. Site C 
is located on a bank adjacent to the main Mekong River (i.e., Hau River). 
Rice paddies at site A are surrounded by a semidike system, where the 
rice paddy is deeply submerged during the flood season. Rice paddies at 
sites B-E are surrounded by a full-dike system. Thirty rice paddies in site 
A and 5 rice paddy fields each at sites B-E were chosen as the ROIs 
(Table S1), where we installed field water level monitoring equipment. 
At the center of each ROI, field water-level data were collected with a 
water level gauge (daily, 10:00 AM-12:00 PM, at sites B-E) from 
November 2015 to February 2017 or with a HOBO CO-U20 L-04 water 
level data logger (Onset Computer Corporation, United States; collected 
hourly at site A) from November 2011 to March 2017 (e.g., Arai et al., 
2021; Arai, 2022). At the same time, we collected information about the 
history of field operations (e.g., fertilization and land preparation/ 
sowing/harvesting dates) for each ROI throughout the observation 
period. Although AWD irrigation practices were conducted by farmers in 
most of the paddies that contained ROIs, some of the ROIs were located 
on paddies where the soil was continuously inundated throughout the 
year and data were collected by local farmers. Data assimilation and 
simulation were conducted all over the Mekong Delta; making use of 
ALOS-2 PALSAR-2 data listed in appendix Table S2. 

2.2. L-band SAR data-based soil submersion map preparation 

PALSAR-2 data in ScanSAR mode and polarimetric mode were used 
in the study. PALSAR-2’s ScanSAR datasets cover the entire Mekong 
Delta (approximately 25–100 m spatial resolution depending on local 
incidence angles, dual polarization [HH/HV], Lv. 1.1; 350.5 km obser-
vation width, 355 km observation length; 105 scenes; October 
2014–December 2017, appendix Table S2). Polarimetric datasets are 
over the region encompassing the test areas (4.3 m azimuth resolution 
and 5.1 m range resolution at a 37◦ incidence angle, quadruple polar-
imetry, Lv. 1.1; 40–50 km observation width, 70 km observation length; 
23 scenes; November 2015–October 2016, appendix Table S2). The 
polarimetric data were decomposed to characterize the microwave 
scattering components in inundated, semi_inundated and non-inundated 
paddy soil (i.e., field water level of the target ROI is respectively over 0 
cm above the soil surface, between 0 to − 5 cm below the soil surface and 
lower than − 5 cm below the soil surface), under different rice growth 
stages. The polarimetric data were converted to a coherency matrix, 
applied to a refined Lee filter (7 × 7 window) to reduce speckle noise, 
and then decomposed with 7 component decomposition (Singh et al., 
2019). The ScanSAR data were processed for rice pixel detection and for 
soil submersion using the correction method considering local incidence 
angle difference as described in Arai et al. (2018). In the resulting map, 
the values of submerged paddy pixels were set to “1”, and non-
submerged paddy pixels were set to “0”. 

2.3. Preparation of a model simulating field water level 

To convert SAR based soil submersion data into information related 
to field water level and irrigation activities through the data assimila-
tion, we designed an irrigation model whose parameters are adapta-
tively optimized by the SAR data. 

For the local-scale simulation with large ensemble numbers without 
sacrificing the high spatial resolution of SAR data, we designed a model 
with low degrees of freedom for the low-cost and flexible data assimi-
lation system. The advantages of this irrigation model are as follows: (1) 
all model parameters are updatable through data assimilation with up- 
to-date satellite data or optimizable locally with ground observation 
data using hierarchical Bayesian schemes with Monte Carlo methods; (2) 
the major factors controlling the field water level simulation are 
considered, including anthropogenic activities (i.e., irrigation timing/ 
duration and drainage) as the model parameters; and (3) the adaptive 
simulation of hydrological status with a carbon‑nitrogen biogeochem-
ical models. 

The irrigation model simulates the field water level lowering dy-
namics, designed as a logit function-like behavior with the following 3 
phases (Tuller, 2005) (1) Gravitational potential energy-dependent 
phase immediately after each irrigation event, in which the rate of 
water level decline is negative and relatively high since the pressure 
potential of the water is high due to irrigation. In addition, the soil 
matric potential has high negative values since the soil is relatively dry 
before irrigation. (2) Soil swelling/saturation phase, in which the rate of 
water level decline becomes relatively slow as the soil becomes wetter 
and swells after irrigation. In this phase, the soil matric potential be-
comes low due to saturation, and the pressure potential also decreases 
due to soil swelling. (3) In the soil suction phase (as the unsaturated soil 
zone is well developed, the soil matric potential becomes higher, leading 
the water from the saturated zone moving to the unsaturated zone, 
accelerating the field water level lowering. These field water level 
dropping dynamics are expressed with a sigmoid function in Eq. (1), 
referring to sigmoid-shaped soil-water physical characteristics (Appen-
dix D). 

d
dt
(wl) =

a − d
dt [sig(mp × t − gp) ]

a
(1)  
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where d
dt (wl) is the rate of field water level decline, t is time, sig() is a 

sigmoid function, exp() is an exponential function, mp is an intensity 
index of matric potential, gp is an intensity index of gravitational po-
tential, and a is a model parameter. Matric potential parameterization is 
conducted based on the hysteresis of the soil submersion status, as 
indicated by the linear combination shown in Eq. (2). 

mp = exp(0 1ns)× [α1×(1to3ns–0to1ns+ 1)
+α2×(3to7ns–1to3ns+ 1)+α3×(7to14ns–3to7ns+ 1) ]/2+α4 (2) 

where 0_1ns is the temporal nonsubmersion rate (nonsubmerged 
number of hours/total hours during a certain period) 0–1 days before 
the last irrigation, 1to3ns is the temporal nonsubmersion rate 1–3 days 
before the last irrigation, 3to7ns is the temporal nonsubmersion rate 3–7 
days before the last irrigation, and 7to14ns is the temporal non-
submersion rate 7–14 days before the last irrigation. α1–4 are model 
parameters. Gravitational potential parameterization is conducted 
based on the hysteresis of the soil submersion status, as shown in Eq. (3). 

gp = ln
(

β×
(

Hafter irrigation + cum.rain
))

(3)  

where Hafter_irrigation is the field water level (cm) immediately after the 
last irrigation. Cum.rain is the cumulative precipitation (cm) since the 
last irrigation. β is a model parameter. How to run the model is described 
in Appendix D. 

The model parameters a1, a2, a3, a4, β, and γ in Eqs. (2–4) are 
parameterized using hierarchical Bayesian modeling analyses with the 
Hamiltonian Monte Carlo method (Stan Development Team, 2017) 
based on the ground observation field data as described in Section 2.1 
and Arai et al. (2018), although the temporal integration modeling 
scheme and observed field water level values are nonlinear, the model 
parameters estimated by the hierarchical Bayesian scheme with the 
Hamiltonian Monte Carlo method successfully converged, as described 
in Appendix E, Table S3. Before the application in the data assimilation 
system with all the training data, the performance accuracy of the 
validation results is confirmed (r = 0.62, n = 10,080 total, an example is 
illustrated in Appendix E, Fig. S2). Through the validation simulation, 
precipitation data and rice cropping calendar (i.e., sowing date/harvest 
date) and irrigation information (i.e., irrigation date, Hafter_irrigation) are 
used from the ground-observed data. For the ensemble simulation, we 
used spatially constant parameters over the Mekong delta in this study. 

2.4. Data assimilation scheme with a local particle filter 

The local particle filter is an advanced particle filtering technique 
based on the philosophy of the localization scheme of the local ensemble 
transform Kalman filter (Hunt et al., 2007). “Particle” has the same 
meaning with “ensemble member” of ensemble Kalman filter (i.e., 
multiple simulation with perturbations on variables or model parame-
ters). The technique is implemented to decrease the number of required 
ensembles for high-dimensional systems (Potthast et al., 2019). To sta-
bilize the assimilation system by avoiding the occurrence of filter 
divergence, we developed a dual-scale data assimilation scheme by 
implementing a focal analysis scheme as the spatial localization into the 
particle filtering system. The scheme allows us to assimilate not only the 
instantaneous state variable but also temporally cumulative state vari-
ables. A four-dimensional filtering technique with temporal localization 
is implemented as described in Hunt et al. (2004). The window length is 
set with 3 sequential observation datasets in the same observation 
window. Each observation is assimilated twice during the 2 sequential 
observation filter cycles (hereafter, repetitive cycling) to compensate for 
the low temporal localization of SAR datasets. Initial states in each 
ensemble were prepared by 2 years of spin-up running with multiplied 
random values for Dbefore_irrigation (mean: − 15 cm; standard deviation: 
7.5 cm) and Hafter_irrigation (mean: 5 cm, standard deviation: 2.5 cm). 

Field-based simulations of the water level in paddies are difficult to 

conduct due to heterogeneity among adjacent paddies, as stated in the 
introduction. However, knowing the spatial percentage of the sub-
merged area, it is possible to derive useful a priori information related to 
the soil submersion probability from satellite observation data, and the 
temporal percentage represents the historical information at the pixel 
level (Aires, 2020). Field water level differences among adjacent rice 
paddies influence the reduction rate of the field water level (Janssen and 
Lennartz, 2008, 2009; Tuong et al., 1994). In particular, the water 
balance of rice paddies in lowland areas is affected by the net lateral 
water flow (Tsubo et al., 2007) and social/infrastructural (e.g., thick-
ness/height of dykes or paddy bunds) factors. Arai et al. (2018) also 
reported that a large part of the paddies in the Vietnamese Mekong Delta 
are continuously submerged during the rainy season. Once the large 
paddies in the dike system are flooded, farmers need to pump out the 
water for several days to prepare the land for rice cropping. Conversely, 
once the soil emerges for long periods of time during the dry season in 
this region, the soil structure tends to shrink, and the water holding 
capacity decreases with an increased percolation rate compared with 
swelling soil in continuously submerged paddies. Therefore, in the dry 
season, large areas of paddies were detected as non submerged. Based on 
these findings, we designed the focal statistics-based observation oper-
ator by assuming that the spatial submersion percentage in the focal 
analysis window (Fig. 1) and temporal submersion percentage of a pixel 
located at the center of the focal analysis window are positively corre-
lated (Cf Fig. 1, middle right illustration). 

To verify this assumption, we investigated the relationship between 
the spatial inundation rate surrounding the ROI computed by the SAR 
data and the temporal inundation rate from the ground-observed field 
water level at each ROI (Fig. 2). The results confirmed the 1-to-1 linear 
relationship between the spatial inundation rate from the SAR data at 
the focal analysis window [i.e., the number of inundated pixels divided 
by the total pixels in a radius surrounding the pixel, as demonstrated in 
Fig. 1] and the temporal inundation rate computed by the simulated 
field water level (i.e., total inundated hours since the last irrigation 
divided by the total hours that have passed since the last irrigation in the 
ensemble space). 

Ensembles with 1024 members (i.e., number of simulations with 
perturbations on states and parameters) for every grid in the GEORICE 
product were simulated for a 2-year data assimilation cycle with 
PALSAR-2 data. We also used a ground-collected cropping calendar data 
of ROI sites for data assimilation cycling. The estimated “Dbefore_irrigation” 
values for every data assimilation cycle and historical data of the field 
water level time series were collected, and then 4×4 pixels of each target 
ROI were extracted. The mean value of the extracted 16 pixels of each 
ROI was compared with the ground observation data. For this purpose, 
the estimated “Dbefore_irrigation” values and temporal local minima of the 
ground-observed field water level data from 10 days before each 
assimilation time (i.e., satellite observation date) to 10 days after the 
assimilation time were calculated. 

A comparison of the spatial distribution of the Dbefore_irrigation values 
with the DEM was also carried out. All the grids covering the over-
lapping area of two InSAR-observation frames were analyzed with 256 
ensemble members without lowering the spatial resolution of observa-
tion data and model grids. As an input cropping calendar for field water 
level simulation, the GEORICE product (https://www.globeo.net/ge 
orice). As DEM data to be compared, we employed the Multi-Error- 
Removed Improved-Terrain DEM (MERIT DEM, Yamazaki et al., 2017). 

3. Results 

Comparison with ground-observed inundation status and quadruple 
polarimetric PALSAR-2 data was carried out to design the PALSAR-2 
data assimilation system (i.e., observation operator) to adaptatively 
estimate the parameters of the irrigation model with high spatiotem-
poral resolution. Seven decomposition components showed clear con-
sistency with 3 types of rice paddy inundation status [noninundated, 
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semi-inundated paddies and inundated paddies, Figs. 3, 4, 5]. The use of 
all 7 components distinguished noninundated paddies from semi- 
inundated/inundated paddies with 1.3% cross validation error 
(Fig. 4a-d, Appendix F). Inundated paddies were distinguished from 

semi-inundated/noninundated paddies with 12.2% cross-validation 
error (Appendix F). Volume scattering and other minor scattering in-
formation (Hx + OD + CD + MD where Hx: helix scattering; OD: ori-
ented dipole scattering; CD: compound dipole scattering; MD: mixed 

Fig. 2. A snapshot of inundation detection by PALSAR-2 
obtained on one of the study sites [Site-A, Thot not, Can 
Tho city, Vietnam, 6th May 2016 (69 days after sowing)] 
with corresponding aerial photo (CF: continuously inun-
dated paddy block; AWD: alternate wetting and drying 
paddy block, whose temporal water level dynamics data 
are presented in Arai et al., 2021) and the relationships 
between the temporal soil-submersion ratio calculated by 
the ground-measured field water level at each ROI [sub-
figures (b, d): +/− 5 days of each ALOS-2 PALSAR-2 
observation; subfigures (c, e): +/− 10 days of each ALOS- 
2 PALSAR-2 observation date] and spatial soil-submersion 
percentage calculated by ALOS-2 PALSAR-2 data (3–6 m 
resolution) [blue circular points in subfigures (b, c) and 
green triangular plots in subfigures (d,e): all pixels of 
ALOS-2 PALSAR-2 polarimetric data (3–6 m resolution) 
within a 30 m focal analysis window and 150 m focal 
analysis window at each ROI, respectively].   
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dipole scattering) also enabled the detection of noninundated paddies 
with 9.5% error, and distinguished semi-inundated paddies and non-
inundated paddies with 4.5% error (Fig. 4e-g, Appendix F). Based on this 
information, 2 indexes were prepared as odd/(odd+double) and vol-
ume/(volume + Hx + OD + CD + MD), and the 2D-SVM (support vector 
machine) classification distinguished semi-inundation and non-
inundation with the lowest error of 1.7% compared with the other 2D- 
SVM classification (Appendix F). 

The HH and HV backscattering intensities of PALSAR-2 6 m resolu-
tion quadruple polarimetric data also showed different inundation 
classification precisions depending on the rice growth stages (Fig. 6, 
Appendix F). Inundated paddies were distinguished from semi- 
inundated/noninundated paddies with 15.7% error (1.6% error for 
0–20 days after sowing, 18.2% for 21–60 days after sowing, 13.5% for 
61–105 days after sowing, Fig. 6, Appendix F). Noninundated paddies 
were distinguished from semi-inundated/inundated paddies with 23.9% 
error (8.7% error for 0–20 days after sowing, 19.2% for 21–60 days after 
sowing, 29.5% for 61–105 days after sowing, Appendix F). Non-
inundated and semi-inundated paddies clearly tended to show higher 
HH σ0 values than inundated paddies during 0–20 days after sowing 
(Fig. 6a-c). Although this trend was not clearly found during 21–60 days 
after sowing, HH σ0 values tended to be greater in noninundated paddies 
than in inundated paddies (Fig. 6d-f). Circularly surrounding the inun-
dated paddy plots, semi-inundated paddies tended to be distributed in 
the 2D scatter plot (Fig. 6d, e). In contrast to 0–20 days after sowing 
stage rice groups, inundated paddies showed higher HH σ0 values than 
noninundated/semi-inundated paddies (Fig. 6 g-i). Consistent with 
inundated paddies 61–100 days after sowing, the widely scattered dis-
tribution of high HH σ0 value zones was also observed for the ScanSAR 
data. 

The data assimilation system with 25 m resolution, dual-scale 
assimilation (pixel-based and 250 m radius) was stably run without 

filter divergence at 5 validation sites with different irrigation in-
frastructures (i.e., a semidike system at the site-A, where paddies are 
submerged for approximately 2 months due to flooding every year from 
September to October; a full-dike system at the site-B, which comprises 
continuously submerged rice paddies and AWD irrigation rice paddies; a 
full-dike system at the site-C located adjacent to the main Hau River; and 
rice paddies with intermittent drainage in acid sulfate soils at the sites- 
D&E). In this section, we present (1) the seasonal dynamics of Dbefor-

e_irrigation estimated at every data assimilation cycle, which is peculiar to 
a semidike system; (2) the spatial contrast of the updated field water 
level and the estimated Dbefore_irrigation observed in a full-dike system 
with continuously submerged rice paddies and AWD paddies; and (3) 
comparisons of the data assimilation outputs with ground-observed 
values at different sites. As preliminary experiments, 3 control experi-
ments were conducted in a semidike system at the site-A (Appendix G, 
Fig. S3). The first control experiment involved normally assimilating 
PALSAR-2 ScanSAR data (i.e., with a focal statistics-based observation 
operator and variable prioritization). The second control experiment 
involved assimilating PALSAR-2 data without variable prioritization. 
The third control experiment involved assimilating PALSAR-2 data 
without a focal statistics-based observation operator. The comparison 
between the first and second control experiments showed that the 
PALSAR-2 data assimilation system without variable prioritization 
showed relatively weak/slow temporal dynamics of the estimated irri-
gation model parameter Dbefore_irrigation (Appendix G). This system un-
derestimates the model parameter during the rainy/flood season and 
overestimates the parameter during the dry season under the current 
PALSAR-2 temporal resolution (Fig. S3). The third control experiment 
showed that the PALSAR-2 data assimilation system without a focal 
statistics-based observation operator could not optimize the model 
parameter, and the estimated value of the parameter was prone to 
remain constant and was unable to show seasonal dynamics (Fig. S3). 

Fig. 3. Ternary plots of the intensity of PALSAR-2 scattering components produced by the Singh 7 component decomposition for 0–20 days after sowing rice paddies 
and fallow paddies (subfigure a), 21–60 days after sowing paddies (subfigure b), and 61–100 days after sowing paddies (subfigure c). Red, green, and blue plots 
indicate noninundated paddies (i.e., the ground-observed field water level of the target ROI is lower than − 5 cm below the soil surface), semi-inundated paddies (i.e., 
the field water level is between 0 and − 5 cm below the soil surface), and inundated paddies (i.e., the field water level is >0 cm above the soil surface), respectively. 
The number of samples in each rice growth stage group is listed in Appendix B, Table S1. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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The results obtained are illustrated in Figs. 7-10 for the site-A in a 
semidike system (Fig. 7) and the site-B in a full dike system, where the 
rice paddies inside the dike system boundaries are not submerged by 
flooding water (Appendix-H. Fig. S4). The temporal dynamics of field 
water level values obtained by ground observations at representative 

ROIs (AWD paddies at the site-A/B and conventionally/continuously 
inundated paddies at the site-B) and spatially averaged values sur-
rounding 16 pixels around the ROI are illustrated in Fig. 7 for the site-A 
and in Fig. S4 for ROIs at the site-B. The spatial pattern of updated field 
water level values (Fig. S4e-h, Fig. 7e-h) reflected both the soil 

Fig. 4. Two-dimensional scatter plots of the PALSAR-2 scattering components produced by the Singh 7 component decomposition (single scattering, double bounce, 
volume diffusion; Hx: helix scattering; OD: oriented dipole scattering; CD: compound dipole scattering; MD: mixed dipole scattering). Red, green, and blue plots 
indicate noninundated paddies (i.e., the ground-observed field water level of the target ROI is lower than − 5 cm below the soil surface), semi-inundated paddies (i.e., 
the field water level is between 0 and − 5 cm below the soil surface), and inundated paddies (i.e., the field water level is >0 cm above the soil surface), respectively. 
The number of samples in each rice growth stage group is listed in Appendix B, Table S1. The relationship between single scattering and double bounce is illustrated 
in subfigures a-d [(a) all plots, (b) all plots whose value is greater than − 40 dB, (c) inundated/noninundated plots whose value is greater than − 40 dB, (d) only 
inundated plots whose value is greater than − 40 dB]. Relationships between volume diffusion and the sum of Hx, OD, CD and MD are illustrated in subfigures e-g [(a) 
all plots, (b) inundated/noninundated plots, (c) only inundated plots]. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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submersion clusters detected by the focal analysis windows of the 
observation operator from the PALSAR-2 data (Fig. S4a-d, Fig. 7a-d) 
assimilated using the pixel-based observation operator and its spatial 
submersion percentage assimilated using the focal statistics observation 
operator with a dual-scale structure. Interestingly, at the site-B in the dry 
season (May) in 2015, low field water levels (pink pixels in Fig. S4e) 
were found in pixels adjacent to both non-rice pixels (i.e., along with 
irrigation canals). The opposite field water level patterns were found in 
2016 (light blue pixels in Fig. S4e) adjacent to and non-rice pixels along 
with irrigation canals. This spatial pattern was derived from the spatial 
submersion rate along the irrigation canals, which is computed by focal 
statistics-based observation operators at rice pixels along with irrigation 
canals. This spatially high contrast among adjacent submerged paddy 
pixels and irrigation canals might have resulted from intense lateral 
water flow across dry soil with low water-holding capacity, which is 
derived from farmers’ drainage/irrigation activities in the dry season (i. 
e., field water drainage from paddies to the adjacent canals in 2015 and 
irrigating water from the canals to the paddies in 2016). 

Irrespective of the differences in observation sites, the estimated 
Dbefore_irrigation values and the temporally local minimum values of the 
ground-observed field water level showed a significant linear relation-
ship in intermittent irrigation paddies (r = 0.82, n = 282, RMSE = 3.77 
cm, Fig. 9). Although the RMSE value was relatively small in intermit-
tent irrigation paddies (site-A: n = 85, RMSE = 3.68 cm; site-B: n = 52, 
RMSE = 4.09 cm; site-C: n = 50, RMSE = 4.26 cm; site-D: n = 60, RMSE 
= 3.33 cm; site-E: n = 31, RMSE = 3.45), it tended to be high at the site- 
B, which has relatively large continuously submerged paddies (site-B: n 
= 18, RMSE = 7.39 cm, Fig. 9). Comparison with the DEM also showed 
that the estimated Dbefore_irrigation values significantly decreased where 
triple rice cropping was practiced to a certain degree in the low- 
elevation zone (<2 m), particularly in the dry season (Fig. 10). In 

contrast, for the triple rice cropping system area in the high-elevation 
zone (3 m<), Dbefore_irrigation values remained continuously high 
throughout the year (Fig. 10). 

4. Discussion 

4.1. Development of the observation operator for SAR data assimilation 
by developing inundation classification methodology 

Inundation was classified with following 3 states as inundated pad-
dies, semi-inundated paddies, and non-inundated paddies regarding the 
difference of field water level. In the studied clay soil, field water level at 
0 cm of the soil surface and − 5 cm below the soil surface were differ-
entiated by the L-band microwave signals. This indicated that L-band 
microwave can penetrate shallow soil surface to approximately -5 cm 
below soil surface. Since semi-inundated paddies was characterized by 
higher volume scattering and dipole scattering from rice plants (Fig. 4e), 
these semi-double bounce derived from the interaction between ground 
water table and root/stem scattering pattern was able to be detected. 
Though this penetration depth in the soil would be highly depending on 
the soil types, dielectric properties controlling states such as the soil 
moisture and electrical conductivity in the soil surface layer, it still has 
the potential to provide the information of irrigation activities such as 
AWD implementation status. Further development differentiating semi- 
inundated paddies and non-inundated paddies is expected, so that the 
SAR based application can provide information supporting the local 
scale decision making on irrigation activities more specifically in future. 
Non inundated paddies were distinguished by the 7 components polar-
imetric decomposition from semi-inundated/inundated paddies with 
only 1.3% cross-validation error. Although Arai et al. (2018) also re-
ported similar results based on the Freeman–Durden method, this 7- 

Fig. 5. Snap shots of the inundation classification 
images [Red: Non-inundated paddies (WL < -5 cm), 
Green: semi-inundated paddies (WL > -5 cm below 
soil surface), Blue: inundated paddies (field water 
level is over 0 cm above soil surface, i.e., WL > 0 cm)] 
based on PALSAR-2 quadruple polarimetric data ob-
tained in An Giang province [(a) 15th June 2016 at 
the dry season end, (b) 10th November 2015 at the 
end of rainy season) and in Can Tho city [(c) 11th 
March 2016 at the dry season start, (b) 20th October 
2017 at the end of rainy season). (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   

H. Arai et al.                                                                                                                                                                                                                                     



Remote Sensing of Environment 279 (2022) 113139

10

Fig. 6. Two-dimensional scatter plots of PALSAR-2 HH/HV backscattering intensities [subfigure (a-c): 0–20 days after sowing paddies or fallow paddies; subfigure 
(b-f): 21–60 days after sowing; subfigure (g-i): 61–100 days after sowing; and subfigure (j): all paddies]. Red, green, and blue plots indicate noninundated paddies (i. 
e., the ground-observed field water level of the target ROI is lower than − 5 cm below the soil surface), semi-inundated paddies (i.e., the field water level is between 
0 and − 5 cm below the soil surface), and inundated paddies (i.e., the field water level is >0 cm above the soil surface), respectively. Subfigures (a, d, g, j) indicate 
paddies with all inundation statuses. Subfigures (b, e, h) indicate semi-inundated or inundated paddies. Subfigures (c, f, i) illustrate only inundated paddies. The 
number of samples in each rice growth stage group is listed in Appendix B, Table S1. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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component experiment exceeded their classification performance, with 
only 2.2% error using only 2 scattering components (single scattering 
and double bounce). More importantly, we found that semi-inundation 
and noninundation were distinguished by only 1.7% error based on the 2 
indexes [i.e., volume/(volume + OD + CD + MD) and odd/(odd-
+double)]. However, distinguishing inundated paddies from semi- 
inundated/noninundated paddies was carried out with a relatively 
high cross-validation error (12.2%). This finding indicated that 

classification between inundation and semi-inundation remains a diffi-
cult problem. Although classification between semi-inundation and 
inundation was accomplished with relatively low error (7.3%) during 
0–20 days after the sowing and fallow period, the cross-validation error 
was prone to become greater in later rice growing stages (Appendix F, 
Table S4). It was interesting to note that non-3components scattering 
intensities. (i.e., volume + OD + CD + MD) showed a potential to detect 
semi-inundated paddies (− 5 < WL < 0 cm below the soil surface, 

Fig. 7. Comparisons of PALSAR-2 ScanSAR observation soil-submersion/nonsubmersion map (a-d), updated field water levels (e-h) and the Dbefore_irrigation (i-l) 
estimated at the local particle filter steps at the site-A with a semidike system. Sentinel-2 multispectral images surrounding target sites (m). The open red squares in 
the subfigures indicate the location of a sample ROI whose field water level values are illustrated in Fig. 8(c). The white pixels in subfigures (a-l) indicate nonrice 
pixels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4e). Since methane emission in this region showed most closed 
relationship with the inundation period with − 5 cm below soil surface 
(Arai, 2022), this information has a potential to evaluate regional 
methane emission sophisticatedly in further development. 

Consistently, HH&HV σ0 values, such as in ScanSAR mode, also 
showed relatively worse performance in classifying inundation and 
semi-inundation (8.7%–29.5%) due to the difficulty in distinguishing 
the difference in ground-volume interaction between inundated paddies 
and semi-inundated paddies. The cross-validation error of distinguish-
ing inundated paddies from semi-inundated/non inundated paddies 
based on HH/HV σ0 values became large, particularly during 21–60 days 
after the sowing period (18.2%; Appendix F, Table S4). To detecting 
inundation in this middle rice growing stages properly, polarimetric 
decomposition with the quadruple polarimetric data had the good per-
formance. According to the HH/HV 2D plot (Fig. 6d-f), HH σ0 values 
were not significantly differentiated between inundated paddies and 
noninundated paddies. However, HV σ0 values tended to be greater in 
non inundated paddies than in inundated paddies during this stage due 
to the limitation of HV signal’s dynamic range (Fig. 6d). This finding 
indicates that differences in volume diffusion, helix scattering or dipole 
scattering between inundated paddies and noninundated paddies, 
particularly during 21–60 days after the sowing period, are important 

classification criteria that limit the performance of inundation classifi-
cation performance. Since the incidence angle at the center of each scene 
of the quadruple observation data varied among the observation orbit- 
path from 27 to 37◦ in this study, further analysis with more ground 
data considering local incidence angle is desirable particularly for 
inundation detection of rice paddies whose rice age is 20–60 days after 
sowing. Further advancement of dual/quadruple polarimetric analytical 
methods to provide more precise signatures from HH-HV signals is also 
expected to overcome this limiting factor. For future application use, 
observation error modeling based on the distance between σ0 values and 
the inundation classifying hyper-plane, which considers local incidence 
angle and the days after sowing will be required to improve the data 
assimilation performance with multi-type SAR datasets (e.g., ALOS-4, 
NISAR, ROSE-L, Sentinel-1). 

4.2. Seasonal dynamics of Dbefore_irrigation in semidike systems and spatial 
dynamics of Dbefore_irrigation in full-dike systems 

At the site-A, the irregular variation in the diurnal canal water level 
dynamics, which would influence the ground water level in the paddies, 
indicated the difficulty of creating 2-dimensional simulations of the 
paddy field water level due to the difficulty of reproducing the influence 

Fig. 8. A sample of the ground-observed air 
temperature/precipitation in subfigure (a), 
ground-observed water level of the irrigation 
canal in subfigure (b), and ground-observed 
field water level with a light blue line and 
temporally local minimum field water level 
adjacent to the data assimilation time (+/−
10 days of each PALSAR-2 observation) with 
solid blue squares in subfigure (c). The mean 
values of the simulated field water level 
during rice cropping periods (WS: winter- 
spring cropping; SS: spring-summer crop-
ping; SA: summer-autumn cropping season) 
among 16 pixels of the ROI are shown with a 
yellow line, and the estimated Dbefore_irrigation 
by a local particle filter are indicated with 
open red squares in subfigure (c) at an ROI at 
the site-A with a semidike system. The loca-
tion of the ROI is illustrated in Fig. 7 with an 
open red square. The length of each local 
particle filter window is illustrated in sub-
figure (c) with the assimilation order 
(numbers in parentheses). The ALOS-2 PAL-
SAR-2 observation dates are illustrated with 
a downward arrow (the closed straight arrow 
and broken arrow indicate the difference in 
the observation frame) in subfigure (c).   
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of the ebb and flow of tides on the simulation. During the dry season 
from January to June, when it hardly rained and the water level of the 
irrigation canal significantly decreased, few soil submersion events were 
detected in the paddies (Fig. 4a, d), and relatively low values of field 
water level (Fig. 4e, h) and Dbefore_irrigation (Fig. 4i, l) were updated. As 
the precipitation rate and water level of the irrigation canal tended to 
increase, more submerged paddy pixels were detected, and high values 
of field water level and Dbefore_irrigation were updated (Fig. 4g, k). 
Although there was a relatively large discrepancy between the estimated 
values of Dbefore_irrigation and the ground-observed values of the tempo-
rally local minimum field water level at the beginning stage of data 
assimilation, the discrepancy tended to diminish as the prior spread 
adjusted to the true states through the data assimilation cycles (Fig. 6c). 
The Dbefore_irrigation value became relatively low in the annually driest 
cropping season [spring-summer cropping season (SS) from March to 
May] and high in the annually wettest season [summer-autumn crop-
ping season (SA) from June to September] (Fig. 4, 6c). These results 
indicated that the Dbefore_irrigation estimated by the local particle filter has 
the potential to regionally evaluate the dissemination status of a safe- 
AWD (Lampayan et al., 2015; Rejesus et al., 2011). 

In contrast to the site-A with a semidike system, seasonal dynamics 
were negligible at the site-B with a full-dike system (Appendix-H&I, 
Figs. S4 and S5). The range of the estimated Dbefore_irrigation was shorter in 

the full-dike sites than that at the site-A with a semidike system, whose 
estimated values were widely scattered from approximately − 27.6 cm to 
+1.0 cm, because the values are year-round stable in a full-dike system. 
However, dynamic spatial differences in the Dbefore_irrigation values were 
found at the sites with full-dike systems (Appendix-H. Fig. S4), in 
contrast to those at the site-A (Fig. 7). As indicated by the ground- 
observed field water level at the site-B, the field water level also ten-
ded to be greater in continuously submerged paddies than in intermit-
tently drained paddies, as was the case for the estimated values of 
Dbefore_irrigation (Appendix-I. Fig. S5). The field water level was mostly 
>10 cm above the soil surface in continuously submersion-prone pad-
dies, although the irrigation height is recommended as 5 cm to imple-
ment safe-AWD (Lampayan et al., 2015; Rejesus et al., 2011) in this 
region. Related to this result, a significant influence of the spatial dis-
tribution of infrastructural properties (altitude of the soil surface and 
distance from the irrigation canal) on the AWD adoption rate has been 
reported at the targeted sites (e.g., Miyashita et al., 2016; Yamaguchi 
et al., 2019). These results indicate that the areas with a high Dbefor-

e_irrigation as estimated by the local particle filter also exhibit submersion- 
prone factors, which is consistent among all cropping seasons. 
Compared with the site-A, a relatively high annual methane emission 
reduction rate by the implementation of AWD to lower the field water 
level and dry the soil has been reported at the site-B [methane emission 
reduction rate: site-B: 49–74% (Taminato and Matsubara, 2016); site-At: 
31.5–66.0% (Arai, 2022)]. The spatial contrast illustrated by the pixels 
with both high and low values of the estimated Dbefore_irrigation among all 
cropping seasons might indicate that the impact on the spatial distri-
bution of land hydraulic behavior as affected by (or affects) the field 
water management status. The spatial distribution of field water levels 
and Dbefore_irrigation updated by the local particle filter resulted in linearly 
shaped borders between soil-submerged clusters (Fig. 7e-h, Fig. S4e-h), 
with distributions consistent with the location of subcanals for drainage 
and irrigation. Notably, the updated field water levels and Dbefore_irrigation 
tended to be lower along the subcanals. This result indicated that the 
dual-scale assimilation technique can detect the impacts of social factors 
at the community scale while also considering lateral water seepage/ 
percolation, even when the allocation/distribution of social factors and 
lateral flow was not included in the simulation. At the site-B, a relatively 
large discrepancy between the estimated Dbefore_irrigation and the local 
minimum field water level of the ROI was detected when intermittent 
drainage was conducted during the assimilation time. The reason for this 
difference might be due to the relatively intense side flow, which rapidly 
decreases the field water level, and the results indicated that the esti-
mation accuracy deteriorates if intense side flow with drainage occurs 
on the satellite observation date. To reduce the bias, frequent state up-
dates with more frequent observation data are desirable (e.g., ALOS-4, 
NISAR, ROSE-L). Furthermore, the presentation of a local particle fil-
ter system assimilating new L-band SAR observation techniques with 
higher spatiotemporal resolution is expected to delineate finer spatial 
distributions of social factors and improve the system from community- 
scale evaluations to individual farming-scale evaluations. 

4.3. Performance of the parameter estimation in the Mekong Delta 

The validation of the estimated Dbefore_irrigation model parameter 
showed a 1-to-1 relationship (Fig. 9) with the ground-observed value of 
the temporally local minimum water level irrespective of the differences 
in observation sites, although some biased plots were found at the sites- 
B&C. At the ROI at the site-B, the local minimum field water level was 
mostly higher than the soil surface in the paddies that were prone to 
continuous submersion (Fig. S5). In such paddies, it was difficult for the 
assimilation system to adequately differentiate the values of Dbefor-

e_irrigation when the values were >0 cm (Fig. 9). This is because of the 
limitation of observation operators’ sensitivities, which evaluate only 
the difference between the soil submersion and nonsubmersion statuses 
(i.e., they are still unable to directly observe the field water level under 

Fig. 9. Relationship between the estimated value of Dbefore_irrigation by the local 
particle filter and the hourly ground-monitored value of the temporally local 
minimum field water level adjacent to the data assimilation time (duration from 
10 days before each assimilation time to 10 days after the assimilation time, 
averaged among 16 pixels around each ground observation point) (RMSE =
4.24 cm, subfigure a) and Sentinel-2’s multispectral images surrounding target 
sites observed on 6 February 2016 (subfigure b). 
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the soil surface by PALSAR-2 data with the currently available algo-
rithms). Therefore, the bias became relatively great at the continuously 
inundated paddies (number of ROIs whose temporally local minimum 
values exceeded the soil surface: 25 pixels; mean ± standard deviation 
of the Dbefore_irrigation: 4.99 ± 2.13 cm above the soil surface; Fig. 9), 
where paddies were prone to continuous submersion with high field 
water levels (mostly >10 cm above the soil surface). Regarding the main 
purpose of this application, the approach presented here can provide 
adequate values of field water level and Dbefore_irrigation as long as the 
values are lower than the soil surface. Although it is still difficult for this 
application to differentiate continuously inundated paddies and inter-
mittent irrigation paddies from the momentary value of Dbefore_irrigation, 
it might detect continuously inundated paddy pixels based on time series 
data since the detected Dbefore_irrigation values from continuously 
inundation-prone paddies’ ROIs were constant nearly year-round, un-
like those of intermittent irrigation paddies (Fig. S5). Relatively large 
biases were also found at the site-C, which is located in a sandbank 
adjacent to the main Mekong River (Hau River, Fig. 9), due to the 
intense side flow of the dike system caused by large-scale irregular 

temporal dynamics of the river water level as affected by the ebb and 
flow of the tides. As Lampayan et al., 2015 summarized from various 
field results obtained over Asian rice paddies, the optimum Dbefor-

e_irrigation value is 15–20 cm below the soil surface, irrespective of dif-
ferences in soil type. Arai et al. (2021) also reported that rice yield 
tended to be higher in rice paddies whose Dbefore_irrigation values were 
15–20 cm (i.e., safe-AWD rice paddies) than in continuously submerged 
paddies. By spatiotemporally identifying rice paddy pixels whose Dbe-

fore_irrigation values are 15 cm below the soil surface, this technique has 
the potential to map rice paddies where the Dbefore_irrigation values should 
be lowered by improving infrastructural/social factors as well as 
reducing irrigation water usage. In addition, by locally identifying rice 
paddies whose Dbefore_irrigation values are less than − 20 cm, this tech-
nique can consistently detect the water demand or severe drought stress 
with high spatiotemporal resolution. Spatiotemporal identification of 
drainage/irrigation-required zones inside dikes with factors restricting 
the adoption of AWD (Miyashita et al., 2016; Yamaguchi et al., 2019) 
has the potential to provide useful information for stakeholders at the 
local community scale. Interestingly, the low-Dbefore_irrigation region was 

Fig. 10. Comparisons of Dbefore_irrigation estimated by the 256-member data assimilation with PALSAR-2 ScanSAR (a: 26 February 2016; b: 9 September 2016), input 
data of the GEORICE rice annual cropping intensity map (c), and MERIT DEM (d). Red, brown and orange indicate regions where Dbefore_irrigation values became 
significantly low. Blue and light blue indicate regions where Dbefore_irrigation values became significantly high. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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located in the low-elevation zone (<2 m), and the high-Dbefore_irrigation 
region was located in the high-elevation zone (>3 m), even though we 
did not use the DEM for our data assimilation process. Comparison with 
the DEM also showed that the estimated Dbefore_irrigation values signifi-
cantly decreased where triple rice cropping was practiced in the low- 
elevation zone, particularly in the dry season, and became high where 
triple rice cropping was practiced to a certain degree in the low- 
elevation zone continuously throughout the year. Consistent with 
other ground-based social science surveys, continuously submerged 
paddies are more common in low-elevation areas that are relatively far 
from dike/river systems, and elevation and the distance from a canal 
exhibit a statistically significant relationship with the rate of AWD 
adoption (e.g., Miyashita et al., 2016; Yamaguchi et al., 2019). These 
results indicated the necessity of spatiotemporally identifying AWD 
irrigation implementation, and our system has the potential to provide 
adequate information at both local and regional scales. With safe-AWD, 
it is recommended to irrigate water into paddies when the water level 
drops to − 15 cm (i.e., Dbefore_irrigation = − 15 cm) to reduce irrigation 
water and methane emissions from soil without sacrificing rice yield. By 
assimilating L-band SAR data, we estimated these field-level values 
before irrigation. We found that almost 50% of paddies were irrigated 
before the field water level dropped to − 15 cm (53.0% for June 2017, 
56.9% for December 2017). In particular, approximately 15% of the 
total rice paddies in the delta were irrigated before the water level 
dropped to − 5 cm and nearly continuously flooded (13.8% for June 
2017, 19.8% for December 2017), and approximately 33% of the total 
rice paddies in the delta were irrigated before the water level dropped to 
− 10 cm (30.6% for June 2017, 35.4% for December 2017). These results 
indicated that the Mekong Delta still has great potential to reduce 
methane emissions without sacrificing rice yield. With respect to the 
adaptation measures for soil drought/soil salinity, we found that the 
measures are applied to approximately 25% of the total rice paddies in 
the Mekong Delta (26.2% for June 2017, 24.1% for December 2017). It 
is important to identify these freshwater-scarce zones and recommend a 
smart freshwater grid system to distribute freshwater to these zones. 
However, these significantly high/low values were detected only where 
triple rice cropping was practiced. The results indicate that higher 
temporal resolution SAR data, such as ALOS-4/NISAR/ROSE-L, may be 
essential to quantify the irrigation status, particularly for single/double 
cropping paddies. 

The issue of methane emissions from the Mekong Delta caused by 
continuous fresh organic carbon supply through double/triple rice 
cropping into frequently irrigated paddy soil (Yan et al., 2009; Arai 
et al., 2022) has become a matter of concern for sustainable agro-
ecosystem management. To operationally evaluate the methane emis-
sion status, rice yield as affected by drought stress and spatiotemporal 
implementation status of AWD irrigation to provide decision support 
and inform carbon pricing schemes, coupling the field water level 
simulation with methane emission simulation models is a viable 
approach (Fumoto et al., 2008; Arai et al., 2018). However, most hy-
drological or crop/soil biogeochemistry models require field water 
levels as input data and cannot simulate the field water level itself. By 
updating realistic field water level data with spatiotemporally optimized 
Dbefore_irrigation based on SAR data, these models could simulate rice 
productivities and greenhouse gas emissions such as methane by adap-
tatively optimizing the input of field water level on every SAR data pixel 
without requiring a large amount of ground-observed field water level 
data (Arai et al., 2022). 

5. Conclusion 

The concept and required techniques of SAR data assimilation with 
relatively high spatial resolution and low temporal resolution are 
demonstrated in this study. This study evaluates a soil drought index (i. 
e., Dbefore_irrigation) that has high potential to inform decision making 
regarding the sustainable water and carbon resource management of 

rice paddies. Moreover, this approach can support adaptive simulation 
with biogeochemistry models considering farmer irrigation practices. By 
prioritizing the estimation of model parameters with long temporal 
scales rather than updating state variables with short temporal scales, 
adequate performance with improved accuracy was confirmed based on 
validation with ground observation datasets. Since most field-scale hy-
draulic simulation models for paddy soils treat field water level data as 
only forcing inputs, we implemented a field water level simulation 
scheme optimized for a high spatial resolution data assimilation system. 
Validation with ground observation data was conducted by taking 
advantage of high spatial resolution assimilation, and adequate perfor-
mance of the dual-scale observation operators and model parameter 
estimations by local particle filter were demonstrated. The spatiotem-
poral dynamics of Dbefore_irrigation model parameters were detected 
depending on the differences in infrastructure (i.e., seasonal dynamics in 
a semidike system and spatial contrast between intermittently drained 
paddies and paddies prone to continuous submersion in a full-dike 
system). Although some factors causing bias remain (side flow in rice 
paddies that are located adjacent to a river with relatively drastic daily/ 
seasonal dynamics due to the ebb and flow of tides, intermittent 
drainage or continuous submersion management), the validation results 
of the dual-observation operators indicated the potential for improve-
ment by downscaling the spatial localization and shortening the 
assimilation cycle by improving the linearity of the observation opera-
tors with new L-band SAR data observation techniques with increased 
spatiotemporal resolution (e.g., ALOS-4, NISAR, ROSE-L). 
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