
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tres20

International Journal of Remote Sensing

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tres20

Assessment of oil palm yield and biophysical
suitability in Indonesia and Malaysia

Pegah Hashemvand Khiabani & Wataru Takeuchi

To cite this article: Pegah Hashemvand Khiabani & Wataru Takeuchi (2020) Assessment of oil
palm yield and biophysical suitability in Indonesia and Malaysia, International Journal of Remote
Sensing, 41:22, 8520-8546, DOI: 10.1080/01431161.2020.1782503

To link to this article:  https://doi.org/10.1080/01431161.2020.1782503

Published online: 04 Sep 2020.

Submit your article to this journal 

Article views: 3

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tres20
https://www.tandfonline.com/loi/tres20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01431161.2020.1782503
https://doi.org/10.1080/01431161.2020.1782503
https://www.tandfonline.com/action/authorSubmission?journalCode=tres20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tres20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01431161.2020.1782503
https://www.tandfonline.com/doi/mlt/10.1080/01431161.2020.1782503
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2020.1782503&domain=pdf&date_stamp=2020-09-04
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2020.1782503&domain=pdf&date_stamp=2020-09-04


Assessment of oil palm yield and biophysical suitability in 
Indonesia and Malaysia
Pegah Hashemvand Khiabani and Wataru Takeuchi

Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, Japan

ABSTRACT
The most crucial technical challenge facing the Malaysian and 
Indonesian oil palm industry is that the actual yield in the form of 
Fresh Fruit Bunch (FFB; unit in tonne per hectare (t ha−1)) are well below 
of potential levels and have stagnated over last two decades. Closing 
this wide yield gap would have a positive impact on the revenue as it 
increases productivity per hectare and it eventually leads to less pres-
sure on opening new land and mitigates environmental costs of pro-
duction. With respect to the indispensable need for closing this gap for 
future prosperity of this industry and sustainable production of palm 
oil, this study assessed oil palm yield, considering the potential growth 
of oil palm dependent on the site qualities and actual yield. Firstly, we 
mapped oil palm plantations combining yearly Advanced Land 
Observation Satellite (ALOS) Phased Array type L-band Synthetic 
Aperture Radar (PALSAR) and ALOS-2 mosaics of L-band backscatter, 
Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance 
(MOD13Q1), and the MODIS Vegetation Continuous Field canopy cover 
product (MOD44B); where 10.3 and 6.68 million ha (Mha) of oil palm 
plantations were mapped, respectively, in Indonesia and Malaysia in 
2017. Secondly, the age after planting was estimated at detected 
plantations using time series of MODIS canopy cover with correlation 
coefficient (r) of 0.68 and Root Mean Square Error (RMSE) of 4.7 years. 
Thirdly, the biophysical suitability of detected plantations was evalu-
ated considering the spatial-temporal variation of different biophysical 
criteria. Combining information from second and third steps, we esti-
mated the potential yield at 250 m spatial resolution. The average 
potential yield in Malaysia ranges between 13.8 t ha−1 and 19.3 t ha−1 

in 2017, where in Indonesia it ranges between 17.8 t ha−1 and 21.7 t 
ha−1 in the same year. The actual yield in next step, has been quantified 
by HH-HV attribute of ALOS PALSAR and ALOS-2 mosaics, where the 
average actual yield in Malaysia ranges between 14.48 t ha−1 and 
20.63 t ha−1 and in Indonesia it ranges between 8.49 t ha−1 and15.40 t 
ha−1 in 2017. Finally, comparing estimated potential and actual yields, 
we evaluated oil palm industries’ performances where distinct differ-
ences were found between two countries. In most of the Malaysian 
states quantified actual yields were above or at the level of estimated 
potential yields, whereas in all Indonesian provinces quantified actual 
yields were well below the potential level. Considering the favourability 
of environment, among all provinces/states, Sabah, and Sarawak states 
in Malaysia and Aceh and North Kalimantan provinces in Indonesia 
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distinctly differ due to their poor performances from rest of provinces/ 
states. The information on different yields provided in this study are 
indispensable needs for efficient and accountable policies as it enables 
governors to directly target specific objectives such as subsidies on 
fertilizers, productive cultivars, and new technologies for the planta-
tions suffering from low yield. Also, this study provides benchmarks for 
each province/state for scopes of actual yield improvements for long- 
term planning.

1. Introduction

Elaeis guineensis known as oil palm is extensively cultivated in South-East Asia, especially 
in Indonesia and Malaysia (Euler et al. 2016). As of 2018, the global palm oil consumption 
has reached 30% of the global vegetable oil, and palm oil has turned into the most 
consumed vegetable oil (USDA 2019). It is expected this increasing demand will continue 
in future years (Pirker et al. 2016). Due to the significant revenue of the oil palm industry, 
this sector plays a crucial role in the economic development of Indonesia and Malaysia 
(Sheil et al. 2009); however, expansion and intensification of this industry have not been 
robustly managed and caused significant negative impacts (Sheil et al. 2009; Varkkey, 
Tyson, and Choiruzzad 2018). Apart from the environmental challenges caused by this 
industry, the most crucial technical challenge of this sector is that the Fresh Fruit Bunch 
yields (FFB; unit in megagram per hectare (t ha−1)) are well below of potential levels and 
have stagnated over last two decades (Euler et al. 2016; Hoffmann et al. 2017; Barcelos 
et al. 2015; Woittiez et al. 2017; Varkkey, Tyson, and Choiruzzad 2018). Closing this wide 
yield gap (YG) would have a positive impact on the revenue as it increases productivity 
per hectare and it eventually leads to less pressure on opening new land and mitigates 
environmental costs of production (Benami et al. 2018; Schrier-Uijl et al. 2013). Potential 
and actual yields are two main components of YG assessment. As a perennial crop, oil 
palm potential yield is a function of tree’s genotype, age, and the biophysical condition of 
the environment (Hoffmann et al. 2017; Corley and Tinker 2003). While the observed yield 
at a field which is generally referred to as actual yield, is a function of potential yield 
coupled with agricultural practices (Dietrich et al. 2012; Sadras et al. 2015). A better 
understanding of these components is an essential need to identify the key causes of 
YG, and it introduces the potential scope for raising yields through management changes 
(Hoffmann et al. 2017; Woittiez et al. 2017). Besides the importance of this information for 
a range of growers, scientific analysis of YG plays an essential role for accountable policies 
design and regulations (OECD 2018). Despite this importance, there is a limited number of 
attempts modelling oil palm yields which are different in their input and output data. 
However, as oil palm is extended in a considerable spatial heterogeneous area (Lobell 
2013), estimated yields using available models neither represent an entire region nor 
consider a full range of conditions.

So far various space-borne and air-borne remote sensing (RS) data have been used to 
deal with the heterogeneity of agriculture area for crops’ yield assessment (Lobell 2013; 
Lobell et al. 2015; Franch et al. 2019; Doraiswamy et al. 2005, 2013; Bastiaanssen and Ali 
2003).
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The biophysical condition of environment for a given crop is evaluated by biophysical 
suitability assessment methods (sys, van Ranst, and Debaveye 1991). So far, a number of 
studies used different RS data to assess the biophysical suitability of the environment for 
different crops (Vasu et al. 2018; Shelia et al. 2019; Mesgaran et al. 2017; Bradford et al. 
2017) as well as oil palm (Pirker et al. 2016; Rhebergen et al. 2018; Harris et al. 2013; 
Mantel, Wösten, and Verhagen 2007; Gingold, Rosenbarger, and Muliastra 2012). 
Although in all of these studies the biophysical suitability assessment has been intro-
duced as a fundamental step of yield assessment, °C of them discuss the biophysical 
suitability of environment at existing plantations due to lack of information and chal-
lenges in mapping oil palm distributions.

Mapping oil palm distribution relying on optical satellite RS and in particular, the 
image-based approach has been reported as a challenging task due to the rapid oil 
palm canopy growth and spectral similarity of this plantation to the other land 
covers such as natural forest and rubber plantation (Li et al. 2015; Torbick et al. 
2016; Víctor and Defries 2013). Relying on the temporal characteristics of optical 
sensors (phenology-based methods) also introduces some challenges particularly in 
small fragmented oil palm plantations as it usually uses Moderate Resolution Imaging 
Spectroradiometer (MODIS) data due to its high temporal resolution (Li et al. 2015). 
Regardless of the approach, the frequent presence of cloud cover makes it almost 
impossible to acquire cloud-free images in tropical regions. While the Synthetic 
Aperture Radar (SAR) can provide images in all-weather and all-time. The Phased 
Array L-band Synthetic Aperture Radar (PALSAR) has been successfully used in 
several studies to differentiate oil palm plantations from forest boundaries in local 
scales (Qin et al. 2016; Li et al. 2015; Wang et al. 2017; De Alban et al. 2018; Reiche 
et al. 2018; Laurin et al. 2012). Proper training of classifiers, solely based on SAR or 
optical data on a regional scale is a challenging task due to different conditions, 
species, and locations. While the combination of SAR and optical data proved to be 
useful for mapping oil palm plantations (Li et al. 2015; Torbick et al. 2016; Gutierrez- 
Velez 2013).

Apart from the importance of environmental condition of plantations, tree’s age is 
another crucial layer of information for oil palm yield assessment (Corley and Tinker 2003; 
Foong et al. 2019; Hoffmann et al. 2017), which RS has proved to provide reliable 
estimation (Chemura, Van Duren, and Van Leeuwen. 2015; Franklin et al. 2003; 
Thenkabail et al. 2004; Tan et al. 2013). Despite the successful application of RS on oil 
palm age determination, most of the studies focus on the characteristics of individual tree 
stand for local field management using very high-resolution imagery (Srestasathiern and 
Rakwatin 2014; Fawcett et al. 2019).

Although RS has shown promising applications in oil palm age and biophysical suit-
ability assessment in different studies, °C of those studies have contributed to oil palm 
yield assessment. Therefore, with respect to the indispensable need for countrywide oil 
palm yield assessment, the objective of this study is to assess oil palm yields (potential and 
actual) and their gap by modelling potential yield considering the age and biophysical 
qualities of plantations and quantifying the actual yield in Indonesian and Malaysian oil 
palm plantations leveraging publicly available RS datasets and platforms at 250 m spatial 
resolution.
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2. Methodology

2.1. Study area

Malaysia is located between 0° and 6° N and 99° to 119° E, with an area of 328,657 km2. 
Indonesia is located between 5° N and 10° S and 95° to 141° E, with an area of 
1,811,569 km2. Since 90% of Indonesia’s oil palm plantations are located on Sumatra 
and Kalimantan island (Indonesian Oil Palm Statistics 2017), to reduce computation time, 
this study restricted the study area to Kalimantan and Sumatra from Indonesia and whole 
Malaysia as is shown in Figure 1.

2.2. Overall processing flow

The processing flow in this study consists of four steps of: (1) Mapping oil palm distribu-
tion, combining MODIS vegetation continuous fields (MOD44B), MODIS vegetation indices 
(MOD13Q1) and Advanced Land Observation Satellite (ALOS) Phased Array type L-band 
SAR and ALOS-2 PALSAR-2 mosaics of L-band backscatter (year 2017); (2) Estimating 
the year of planting at detected plantations using the time series of MOD44B; (3) 
Evaluating the biophysical suitability of environment at the detected plantations; and 
(4) Assessing oil palm yields, comparing oil palm actual and potential yields in 2017 at 
250 m spatial resolution. All the processing in this study has been done in Google Earth 
Engine (GEE), a cloud computing platform which hosts publicly available optical and SAR 
data archives and is available in Python and JavaScript (http://earthengine.google.org/) 
(Gorelick et al. 2017). Figure 2 shows the overall flowchart of the study.

Figure 1. Study Area, where Indonesian provinces have been identified with I and Malaysian states 
have been identified with M.
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2.3. Mapping oil palm distribution

2.3.1. SAR data pre-processing
This study used ALOS PALSAR/ALOS-2 PALSAR-2 (AP/AP2) global 25 m yearly mosaic data 
for the year 2017 (Shimada et al. 2014). These data are provided in dual polarization of HH 
(horizontal transmit and horizontal receive) and HV (horizontal transmit and vertical 
receive). The refined Lee filter was applied on orthorectified and slope corrected HH 
and HV bands to reduce inherent speckle noise of SAR data (J. Sen Lee 1986). The digital 
numbers (DN) values were converted to gamma-naught (γ0; in decibel, dB) with (1): 

γ0 ¼ 10� log10 DN2� �
� 83:0 (1) 

Additional attribute of HH–HV was generated calculating the difference of HH and HV 
regarding its promising application in oil palm mapping (Qin et al. 2016; Kou et al. 2015). 
HH, HV, and HH-HV were rescaled into 250 m spatial resolution (consistence with a spatial 
resolution of MOD44B and MOD13Q1 (discuss in sections 2.3.2 and 2.3.3) to prepare 
a stacked image for supervised classification.

2.3.2. MODIS vegetation continuous fields (MOD44B) pre-processing
Presence of multiple endmembers in young oil palm pixels (where the oil palm canopy is 
relatively small) makes mapping of this group challenging at a national scale with 
extensive heterogeneity using either of optical or SAR sensors. While in mature planta-
tions due to developed and dense structure of the canopy, oil palm plantation can be 
separated more precisely. To deal with the challenge of mapping young plantations, we 
relied on the temporal characteristic of MODIS vegetation continuous fields (MOD44B). 
This product provides yearly information on percentage tree cover at 250 m spatial 
resolution with Root Mean Square Error (RMSE) of about 10% using monthly composites 
of Terra MODIS land surface reflectance data (DimiceDimiceli et al. 2015). After removing 
poor-quality pixels using the quality band, Linear Regression model (LR) has been applied 
on 17-year time series of percentage tree cover band. The model calculates a linear 
regression using least square method between the independent variable of time (year) 
and the dependent variable of percentage tree cover. Due to negative slope values at 

Figure 2. The overall flowchart of the study.
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young plantations in comparison with similar classes, slope component of LR model helps 
young oil palm be separated from other similar classes in the study area. The slope and 
offset components of each pixel’s regression equation have been used as separated 
attributes to prepare a stacked image for supervised classification.

2.3.3. MODIS vegetation indices (MOD13Q1) pre-processing
Rubber plantations are also widely found in Malaysia and Indonesia which exhibit similar 
spectral properties to young oil palm plantations. However, rubber has been reported 
showing different Normalized Difference Vegetation Index (NDVI) signature during its 
defoliation (leaf-off) and foliation (leaf-on) periods in comparison with oil palm plantation 
(Torbick et al. 2016; Kou et al. 2015; Razak et al. 2017; Zhang et al. 2013). Therefore, this 
study also took this property to differentiate young oil palm from rubber plantations. This 
study used MOD13Q1 product which provides vegetation indices including NDVI com-
puted from atmospherically corrected bi-directional surface reflectance masked for water, 
clouds, heavy aerosols, and cloud shadows. Accordingly, first, the monthly characteristic 
of rubber’s NDVI has been checked in a period of 2000–2017 on sample plantations to find 
defoliation (distinct NDVI drop) and foliation (gradual NDVI increase) periods (JA et al. 
2017; Kou et al. 2015). Next, LR model has been applied on 17-year time series of NDVI in 
the detected foliation and defoliation period of rubber. The slope and offset components 
of each pixel’s regression equation have been used as separated attributes to prepare 
a stacked image for supervised classification.

2.3.4. Optical-SAR supervised classification
Compiling slope and offset attributes derived from LR model on MOD13Q1 NDVI and 
MOD44B percentage tree cover, and HH, HV, and HH-HV attributes from AP/AP2, we 
generated a stacked image (MOD-AP) for year 2017 masked waterbodies to conduct 
supervised classification. We used the Classification and Regression Trees (CART) method 
for classification due to its better performance in comparison to the other classifiers in oil 
palm mapping (J. S. H. Lee et al. 2016). Visually interpreted samples have been randomly 
selected using Google Earth Pro (‘Google Earth Pro’) for two classes of oil palm and °C oil 
palm to conduct supervised classification on MOD-AP. Accordingly, we took about 13,200 
and 6200 pixel samples for oil palm class and 14,700 and 2600 pixel samples for no oil 
palm class, respectively, in Indonesia and Malaysia. Seventy per cent of the samples have 
been used to train the classifier and 30% used for the accuracy assessment.

2.4. Estimating the year of oil palm planting

Fresh Fruit Bunch (FFB) is the main product of oil palm tree which different kinds of oils 
are extracted from its mesocarp and kernel parts (Corley and Tinker 2003). Tree starts 
producing FFB 3 years after planting. FFB increases rapidly by 10 to 11 years. After that, 
production reaches to its peak and starts a plateau phase by 18 years after planting. In oil 
palm older than 18 years old a gradual decline of the yield is expected (Foong et al. 2019; 
Corley and Tinker 2003).

In this study, in order to estimate the years after planting of the detected plantations, we 
first determined the year of planting. We assumed that the gap between land clearance 
(land preparation) and oil palm planting is less than 1 year (Gaveau et al. 2016) and oil palm 
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trees have been planted in the same year of minimum observed tree coverage. Respectively, 
in the 17-year time series of MOD44B (percentage tree cover band) (2000–2017) masked 
with detected plantations in 2017, we searched for the year with minimum percentage tree 
cover in each pixel of oil palm. We considered this year as the year of land clearance which is 
concurrent with the year of oil palm planting. Figure 3(a) shows a time series of MOD44B 
percentage tree cover band at an oil palm pixel where the year with a minimum percentage 
of tree cover (2002) is detected and considered as the year of oil palm planting.

Since usually at the time of land clearance the percentage of tree cover drops to less 
than 25%, if the detected minimum value on the time series was greater than 25%, we 
considered that oil palm planting has happened before 2000 (Figure 3(b)) and we 
assigned the year 1995 as the year of planting, due to the rapid development of oil 
palm industry in the period of 1990–2000 (Koh and Wilcove 2008). We then compared the 
detected year of land clearance with 64 visually interpreted samples to check the accuracy 
of detection. The detected year of planting has been used to estimate the years after 
planting and also to generate a time series of oil palm’s distribution maps (2007–2016) 
using oil palm distribution map in 2017 (discussed in section 2.3).

2.5. Oil palm biophysical suitability assessment

In this study, the suitability assessment framework suggested by the Food and Agriculture 
Organization of the United Nations (FAO) has been used. Accordingly, to assess the 
biophysical suitability of an environment for a given crop, geomorphological suitability, 
and meteorological suitability are evaluated separately. Integrating geomorphological and 
meteorological suitability indices, the final biophysical suitability is calculated. In this study, 
we selected five meteorological and two geomorphological criteria based on a detailed 
literature review. We defined three different mathematical functions (supplementary mate-
rial section-a) to transform each of these criteria to rated values ranging from 100 to 0 based 
on comparison with oil palm requirements introduced by FAO (Table 1) (sys, van Ranst, and 
Debaveye 1991). The value 100 is assigned to the optimum level of a criterion and 0 is 
assigned to the minimum level of a criterion. In this study, we used the square root 
parametric methods to calculate suitability indices as presented in equation 2. 

Figure 3. A time series of percentage tree cover at two sample oil palm pixels: (a) Year 2002 is 
detected as the year of oil palm planting; (b) Oil palm pixel has experienced planting before 2000.
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Si ¼ Rmin �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

100
�

B
100
�

C
100
� . . .

r

(2) 

where Si is a suitability index, Rmin is the rated value of the most constraining criterion (the 
minimum-rated value among all criteria), and A, B, C are the remaining rated values for 
rest of criteria. The final biophysical suitability class is calculated according to equation 3. 

Oil palm biophyical suitability class ¼ SM � SG (3) 

Where SM is meteorological suitability index and SG is geomorphological suitability index. 
We assessed the biophysical suitability in years 2007–2017 to capture its temporal varia-
tion assuming that meteorological factors vary in different years whereas the geomor-
phological factors remain consistent.

2.5.1. Meteorological suitability
Based on a detailed literature review (Corley and Tinker 2003; Pirker et al. 2016; Rhebergen 
et al. 2016; Mantel, Wösten, and Verhagen 2007; Harris et al. 2013; Gingold, Rosenbarger, 
and Muliastra 2012; Stickler et al. 2007; sys, van Ranst, and Debaveye 1991), in this study 
five meteorological factors have been selected consisting of annual mean temperature, 
annual maximum temperature, mean temperature of the coldest month of the year, 
annual precipitation, and the number of dry months in which plantation receives less 
than 1000 mm of precipitation.

The optimal temperature condition for oil palm ranges between 22°C and 28°C, and the 
mean temperature of the coldest month of the year should not be less than 15°C. Besides, 
the optimal precipitation is 1700–2800 mm per year. This study used TerraClimate dataset 
for all temperature-related parameters in 4.5 km spatial resolution (Abatzoglou et al. 2018) 
and Global Satellite Mapping of Precipitation (GSMaP) in about 10 km spatial resolution 
for two precipitation-related parameters (Kubota et al. 2006). All the meteorological 
parameters were rescaled to 250 m consistent with oil palm distribution map.

2.5.2. Geomorphological suitability
Oil palm is not sensitive to soil chemical and physical requirements and grows on different 
types of tropical soils where some of them may not be suitable for other crops (Corley and 
Tinker 2003). However, the slope limits cultivation due to the increase of planting, 

Table 1. Oil palm biophysical criteria used in this study and their suitability ranges.
Suitability 

Class 5
Suitability 

Class 4
Suitability 

Class 3
Suitability 

Class 2
Suitability 

Class 1

Criterion Perfect Suitable Moderate Marginal Not suitable

Annual precipitation (mm) 1700–2875 1450–1700 1250–1450 1000–1250 <1000
1700–2875 2875–3250 3250–3625 3625–4000 >4000

Number of dry months (unitless) 0–2 2–3 3–4 >4 >4
Annual mean temperature (°C) >22 22–20 20–18 <18 <18
Annual maximum temperature  

(°C)
>27 27–24 24–22 <22 <22

Temperature of the coldest 
month (°C)

>15 >15 >15 >15 <15

Slope (°) 0–8 8–16 16–30 30–50 >50
Elevation (m) 0–1500 >1500 >1500 >1500 >1500
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harvesting, and maintenance cost. The optimal slope for oil palm cultivation is 0–8� but oil 
palm also can grow in slope up to 16� (Corley and Tinker 2003). This study used Shuttle 
Radar Topography Mission (SRTM) (Van Zyl 2001) in 90 m grid cell size for both elevation 
and slope criteria. All the geomorphological parameters were rescaled to 250 m consis-
tent with oil palm distribution map. Although soil physiochemical attributes affect pro-
ductivity (such as yield variations in peatland and non-peatland locations), these variables 
are relatively unstable due to human interventions and yet there is no reliable source of 
information with sufficient ground data depicting a spatial-temporal variation of these 
parameters at country scale. Therefore, this study only considered elevation and slope 
attributes.

2.6. Oil palm yield assessment

In this study, yield assessment consists of four steps. In the first step, oil palm potential 
yield was estimated considering the biophysical suitability of the environment and age 
after planting at the detected plantations in time series of 2007–2017. In the second step, 
actual yield was quantified using AP/AP2 bands and attributes in the same period. In the 
third step, estimated potential yield for the year 2017 was calibrated based on regression 
equation between potential and actual yields of years 2007 to 2016 on each oil palm pixel. 
In the last step, calibrated potential yield in 2017 was compared to quantified actual yield 
in the same year to assess existing gap in different provinces/states.

2.6.1. Oil palm potential yield estimation
To estimate oil palm potential yield, we first considered the effect of age after planting on 
FFB production (discussed in section 2.4). Based on (Foong et al. 2019), we transformed 
the age after planting of each oil palm pixel to its respective FFB yield (Figure 4). We 
considered this yield as age-dependent yield.

We assumed that this yield will only achieve in the absent of any environmental 
constraints (only if the biophysical suitability of oil palm pixel is in range of suitability 
class 5). If biophysical suitability pixel ranges in suitability class 1, then yield 0 was 
assigned as the potential yield of that pixel (Equation 4). 

Ypot ¼

0 ifSpixel ¼ Sclass1
Spixel�YAgedependent

Sclass5� Sclass1
ifSclass1 < Spixel < Sclass5

YAgedependent ifSpixel ¼ Sclass5

8
<

:
(4) 

where Ypot is potential yield, Spixel is the suitability of the pixel, Sclass5 is the maximum 
suitability, Sclass1 is minimum suitability and YAge-dependent is the calculated age-dependent 
yield.

2.6.2. Oil palm actual yield quantification
As oil palm grows, it produces more FFB which are located under the canopy (Corley and 
Tinker 2003). While from optical sensors it is challenging to estimate FFB, microwaves 
signals (in particular L-band) have a great chance to penetrate into the upper part of 
canopy to give more information on its structure (Darmawan et al. 2016). FFB production 
is also associated with tree height growth, which results in a greater interaction of L-bands 
signals with the trunk. Therefore, considering the association of different attributes of AP/ 
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AP2 and oil palm tree structure, in this study we used AP/AP2 to quantify oil palm annual 
actual yield. We used oil palm national statistics of both countries in years 2007–2017 
(Malaysian Palm Oil Board; Indonesian Oil Palm Statistics) as an ancillary data to check the 
association of AP/AP2 attributes and reported yield to quantify actual yield. The statistics 
report yields in the form of mean provincial FFB (t ha−1 year −1) which are mainly 
calculated based on the average values of recorded FFB’s weights reached to the mills 
in each province/state. Despite these data have been previously reported to inherit some 
degrees of underestimation due to difficulties in harvesting and data collection method 
(Hoffmann et al. 2017; V. O. Sadras et al. 2014; Burke and Lobell 2017), their spatial- 
temporal coverage outweighed other field data in national scale studies.

We first masked AP/AP2 HH, HV, and HH-HV attributes in years 2007–2017 with 
corresponding oil palm distribution maps. Second, we calculated the provincial mean 
values of HH, HV, and HH-HV over oil palm plantations for 13 Malaysian states and 14 
Indonesian provinces for all 7 years. From 189 prepared data for each attribute, 14 outliers 
have been identified and removed based on the interquartile range method. In 175 data 
associations of each HH, HV and HH-HV with reported yield have been separately checked 
using 80% of data as training dataset and 20% of data as testing dataset. In the last step, 
the regression equation of the best predictor was used to generate the actual yield at oil 
palm pixels in different years.

2.6.3. Potential yield calibration
Due to the heterogeneity of the study area, different genotypes of oil palm are likely to be 
planted across the region which have different phenology and yielding characteristics. In 
order to consider different genotypes and any other possible permanent environmental 

Figure 4. Typical oil palm FFB yield associated with the age of tree after planting (Foong et al. 2019).
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constraints apart from the considered parameters, yield calibration is one of the critical 
steps in potential yield estimation (Seidel et al. 2018; Guo, Wenxiang, and Bryant 2019; 
Van Ittersum et al. 2013). In this study, we calibrated the potential yield based on a least 
square method where the regression equation of potential yields against actual yields in 
years 2007–2016 in each pixel of oil palm has been used to calibrate the potential yield in 
2017.

2.6.4. Yield assessment
Following Dietrich et al. (2012), in this study, we considered the ratio of actual and 
potential yields as an indicator of the agriculture practices. In this concept, the actual 
yield is a function of the agriculture practices together with the potential yield. 
Respectively, a high actual yield can be the result of implementation of appropriate 
agricultural practices or high potential yield. Thus, the actual oil palm yield at the location 
j can be described as a function of two variables of the potential yield and the agricultural 
practice index (Equation 5). 

Yact;j ¼ Ypot;j � αj (5) 

where Yact is actual yield at pixel j, Ypot is the oil palm potential yield at pixel j and α is 
agricultural practice index at same pixel. Therefore, to evaluate the level of the agriculture 
practice inputs in each province/state, we calculated the ratio between provincial mean 
actual and potential yields.

3. Results and Discussion

3.1. Oil palm distribution map

Figure 5 shows an average NDVI per month for 200 arbitrary oil palm and rubber pixels 
through observation years. The points and error bars show samples’ median and standard 
deviation (SD) values. The high SD values in some months show data poor data quality. 
NDVI showed different characteristics in foliation and defoliation period of rubber (from 
March to July) in comparison to oil palm plantation (JA et al. 2017). This period was 
consistent with the reported period in (Zhang et al. 2013) with 1-month time lag which 
was due to different geographical regions. Accordingly, this period has been used to 
differentiate oil palm and rubber plantations in the case of partial confusion of young and 
sparse oil palm plantation with rubber.

AP/AP2 attributes proved to be powerful to separate oil palm plantations from natural 
forest in confirmation of previous studies (Figure 6) (Qin et al. 2016; Li et al. 2015; Wang 
et al. 2017; De Alban et al. 2018; Reiche et al. 2018).

The slope and offset of LR on MOD44B percentage tree cover could compensate for the 
errors raised by the confusion of young oil palm plantations and other dominate vegeta-
tions (Figure 6(a)). The HH band proved to be helpful to separate mature oil palm and 
cocoa plantations which are mainly found in Indonesia (Figure 6(b)). This is due to 
different trunk structures which results in different HH backscattering characteristics.

CART classifier achieved an overall accuracy of 0.91 and 0.78 with kappa coefficient (k) 
of 0.98, respectively, in Malaysia and Indonesia. The overall accuracies, k, producer’s and 
user’s accuracies for oil palm and no oil palm classes presented in the Table 2. The oil palm 
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Figure 5. The monthly characteristics of time series NDVI (2000–2017) for rubber and oil palm 
plantations.

Figure 6. Performance of different optical and SAR attributes in separating dominant vegetations in 
the study area: (a) The scatter plot shows how dominated vegetations were separated using scale 
component of LR model on MOD44B combined with HH-HV attribute of AP/AP2; (b) The Line plot 
shows how HV, HH, and HH-HV mean backscattering values of dominate vegetations are differ from 
each other.

Table 2. Oil palm classification’s confusion matrix in Malaysia and Indonesia.
Oil palm No oil palm User’s accuracy

A) Confusion matrix of oil palm classification in Malaysia
Oil palm 1693 167 0.91
No oil palm 82 698 0.89
Producer’s accuracy 0.95 0.88
Overall accuracy 0.91 k 0.98

B) Confusion matrix of oil palm classification in Indonesia
Oil palm 3578 382 0.79
No oil palm 1467 2943 0.91
Producer’s accuracy 0.71 0.89
Overall accuracy 0.78 k 0.98
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user’s and producer’s accuracies in Indonesia are less than Malaysia. This is due to 
different characteristics of oil palm industry in both countries which leads to more sparse 
and fragmented patches of land smaller than 7 ha in Indonesia (Varkkey, Tyson, and 
Choiruzzad 2018; Craw 2019).

Taking a moderate spatial resolution of 250 m introduced some challenges in mapping 
these small patches (Li et al. 2015). Also, the extensive heterogeneity of study area made 
proper training of classifier challenging which effected the classification accuracy. 
Additionally, fine-resolution images in Google Earth Pro which have been used for visual 
interpretation, were often obtained from different dates, which considering rapid land 
cover changes in the study area, is another source of the misclassification.

The total area under oil palm plantations in Malaysia in 2017 was estimated to be 
6.68 million ha (Mha) and 10.39 Mha in Sumatra and Kalimantan territory of Indonesia. 
Comparing the area under oil palm plantations in each province/state with a national 
statistic, in all Malaysian states, our study showed overestimation except Sarawak state. 
Similar overestimation in Malaysian case has been reported in (Cheng et al. 2019); where 
oil palm plantations have been mapped using ALOS-1/2 PALSAR-1/2. Along with the 
accuracies of classification, these overestimations are also attributed to the reliability of 
the national statistics (in particular case of Sarawak) and the method of measuring the 
area (pixel counting). In the case of Indonesia both under and over estimation were 
observed (Figure 7). This is due to partial instability of coarse spatial resolution in the cases 
of small and fragmented plantations where other endmembers are observed in a pixel.

3.2. The year of oil palm planting

In this study, in order to detect the year of planting, we assumed that the year in which land 
has been cleared is the same year of oil palm planting. Therefore, we searched for the year 
with minimum tree cover on the time series of MOD44B masked by oil palm distribution in 
2017. The detected year with minimum tree cover showed correlation coefficient (r) of 0.68 
with RMSE of 4.7 years against observed values (Figure 8(a)). Assigning the year 1995 to all old 
plantations which have been planted before year 2000, increased the RMSE, while for the 
samples observed in year 2000–2017 the RMSE was 3.3 years. Considering the year 1995 as 
the year of planting at old plantations, however, does not strongly affect potential yield 
estimation as those plantations have already entered the plateau phase in which yield has 
less variation with tree ageing. The estimated years after planting in this study (RMSE of 
4.7 years) showed reasonable accuracy in comparison with a similar study (McMorrow 2001), 
where RMSE of 3.9 years was reported for estimation using a linear regression of the age after 
planting and all reflective bands of Landsat Thematic. Our estimation also showed acceptable 
results in comparison with (Chemura, Van Duren, and Van Leeuwen. 2015) where the authors 
used WorldView2 to determine the age after planting from an empirical relationship between 
tree age and crown projection (RMSE 1–13 years depending on the age of the tree).

In this study, we used the year of planting as a benchmark to generate the time series of 
oil palm distribution maps (2007–2016) at 250 m spatial resolution using the oil palm map of 
2017. Figure 8(b) shows the estimated area under oil palm plantations plotted against 
reported area from national statistics in both countries (Indonesian Oil Palm Statistics; 
Malaysian Palm Oil Board). Due to lack of data at provincial level in years 2007–2010, the 
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area under oil palm in these years have been compared at the country level. The RMSE of 
estimated area in all data in the period of 2007–2016 was 0.5 million ha and R2 was 0.9.

Figure 7. The estimated and reported area under oil palm plantations in 2017 at each province/state 
in Indonesia and Malaysia (unit in million ha (Mha)) (Indonesian Oil Palm Statistics 2017, Malaysian Oil 
Palm Statistics 2017).

Figure 8. (a) Detected year of minimum tree cover vs the observed year of land clearance at 64 visually 
interpreted samples. (b) The estimated area under oil palm plantations vs reported area in years 
2007–2017, with the RMSE of 0.5 (Mha) for all plotted data in all years.
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3.3. Oil palm biophysical suitability assessment

Combining the meteorological and geomorphological suitability indices, a time series 
(2007–2017) of biophysical suitability has been generated. Accordingly, in almost all the 
study area precipitation-related parameters (number of dry months and annual precipita-
tion) are the least favourable factors for optimal oil palm growth. This is in agreement with 
Oettli, Behera, and Yamagata (2018) in the case of Malaysia where the author emphasized 
on the pronounced effect of precipitation among the other meteorological factors on FFB 
yield. In highly elevated regions, equal contribution of all three factors limits oil palm 
optimal growth. This is due to high correlation of elevation and temperature in a tropical 
region, where per 1000 m of elevation, temperature declines around 6°C (Pirker et al. 
2016). In Central and East Kalimantan (refer to Figure 1 for the location of each province/ 
state), combination of precipitation and temperature limitations is counted as a constrain 
for oil palm growth. Considering all meteorological and geomorphological factors, 
Lampung and North Kalimantan provinces in Indonesia and Sembilan and Johor states 
in Malaysia have been identified as the least biophysically favourable locations for oil 
palm plantations. While in contrast, Central, and West Kalimantan in Indonesia and 
Sarawak and Penang in Malaysia are the most favourable locations for this cultivation.

3.4. Oil palm yield estimation

3.4.1. Oil palm potential yield
The average potential yield in Malaysia in 2017 ranges between 13.8 t ha−1 and 19.3 t 
ha−1, where in peninsular Malaysia it ranges between 13.5 t ha−1 and 18.1 t ha−1. In Sabah 
and Sarawak, the average potential yield ranges between 20.2 t ha−1 and 20.8 t ha−1. The 
estimated potential yields are well consistent with Oettli, Behera, and Yamagata (2018), in 
which the authors introduce a statistical climate-based model for Malaysia to predict oil 
palm yield using local atmospheric variable together with large-scale clime indices (such 
as ENSO). The maximum country-level potential yields had less than 0.5 (t ha−1) differ-
ences in both studies, while the minimum potential yield showed 5.1 (t ha−1) less in our 
study. Integrating the age after planting into potential yield estimation is the main reason 
for observed partial disagreement between both studies. However, as it was discussed in 
section 2.4, considering the age of plantation is a crucial step in oil palm potential yield 
estimation which has not been considered in the mentioned study.

The average potential yield in Indonesia in 2017 ranges between 17.8 t ha−1 and 21.7 
t ha−1, where in Sumatera it ranges between 17.1 t ha−1 and 21.7 t ha−1, and in Kalimantan it 
ranges between 18.8 t ha−1 and 21.4 t ha−1. We compared our estimated potential yields with 
an estimation of PALMSIM (Simulating potential growth and yield of oil palm) model intro-
duced in Hoffmann et al. (2014) at eighth sample locations in Indonesia (Figure 9).

PALMSIM takes a simple physiological approach to estimate the upper ceiling of the oil 
palm potential yield which is determined by solar radiation and it is in absent of any other 
environmental limiting factors such as water limitation (Hoffmann et al. 2014). Therefore, 
in all locations PALMSIM showed overestimations on average of 19.8 t ha−1 year−1 in 
comparison with our estimations. This discrepancy was expected as PALMSIM authors 
also emphasized on the importance of consideration of the water limitation in future 
studies (Hoffmann et al. 2014). In Euler et al. (2016), the authors considered 75–80% of 
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PALMSIM estimations as the oil palm exploitable yield for yield assessment in smallholder 
plantations in Jambi province in Indonesia. Comparing 75% of PALMSIM estimations with 
our study, 7.3 t ha−1 underestimation on average was realized in this study in all locations 
in 2017 (when our potential yield model was calibrated based on previous years). In both 
studies, however, the annual variation of potential yield showed similar patterns, which 
confirms the reasonable performance of our proposed methodology in capturing the 
effect of annual variations of meteorological factors on oil palm FFB yield. This similarity in 
pattern is mainly due to the covariance effect of temperature and solar radiation.

Figure 10 shows provincial potential yield in Indonesian and Malaysian provinces/ 
states in 2017. Respectively, the highest potential yields were captured at Bangka- 
Belitung, Bengkulu and West Sumatera in Indonesia and Sabah, Sarawak, and Perak in 
Malaysia. And the lowest potential yields were captured in Lampung and South Sumatera 
in Indonesia and Perlis and Terengganu in Malaysia. Considering the uncertainty levels 
embedded of input datasets, the uncertainty of 4.6 t ha−1 was estimated for potential 
yield estimation (supplementary material section-b).

3.4.2. Oil palm actual yield
We checked the association of provincial mean values of AP/AP2 HH, HV, and HH-HV with 
reported provincial yield separately using 80% of data as training data and 20% of data as 
testing data. Accordingly, HH-HV attribute showed the highest correlation of 0.5 at training 
data (Figure 11(a)), and 0.53 in testing data. The RMSE of estimated actual yield from HH-HV 
attribute was 2.9 t ha−1 year−1 with a mean value of 13.38 t ha−1 year−1. The better 
association of HH-HV and reported yield are due to the characteristics of oil palm growth 
model, in which, as oil palm gets older, it produces more FFB which are located under the 
canopy (Corley and Tinker 2003). This structure leads to more volume scattering and greater 
HV value in high yield trees (Shabdin et al. 2017). This production is always associated with 
an increase in the height of tree, which together results in greater HH-HV. A weaker 

Figure 9. Comparison of estimated potential yields in this study and PALMSIM model in sample 
locations (a-h) in different years.
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correlation has been observed in the case of HV and HH bands (Figure 11(b and c)). The 
weak correlation of HH values and reported yields are due to the fact that apart from the 
FFBs, structure of canopy shows some differences in a different stage of growth and 
environmental conditions (Corley and Tinker 2003) which results in wide ranges of volume 
scattering. It is difficult to observe any association between reported yields and HH values, 
which is due to the fact that oil palm’s height grows in whole tree life even in the over 
mature stage when the FFB production declines (Corley and Tinker 2003).

The average actual yield in Malaysia in 2017 ranges between 14.48 t ha−1 and 20.63 t ha−1, 
where in Sabah and Sarawak it ranges between 16.41 t ha−1 and 18.50 t ha−1. The average 
actual yield in Indonesia in the same year ranges between 8.49 t ha−1 and 15.40 t ha−1, where 
in Sumatera it ranges between 8.49 t ha−1 and 15.40 t ha−1, and in Kalimantan it ranges 
between 8.63 t ha−1 to 17.25 t ha−1.

3.4.3. Oil palm yield assessment and agricultural practice level
We checked the discrepancy of potential and actual yields in each province/state. 
Accordingly, states of Sarawak and Sabah were identified with noticeable YG between 
potential and actual yields in comparison with the other states in Malaysia. Similarly, 
provinces of Aceh, North, and West Kalimantan in Indonesia showed a distinct gap in 
comparison with other provinces. Figure 12 shows the estimated gap in 2017, where the 
pixels with positive YG (actual yield is greater than potential yield) are presented in blue 
colour and negative gap (actual yield is less than potential yield) are presented in red 
colour.

Figure 10. Provincial potential yield in Indonesian and Malaysian provinces/states in 2017 (sorted 
descending). The median potential yields for Indonesian provinces have been shown in orange and 
Malaysian states have been shown in blue. The error bars show the standard deviation of potential 
yield in each province/state. Indonesian provinces have been identified with I and Malaysian states 
have been identified with M.
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In this study, oil palm yields exhibit spatial patterns in which the yields tended to be 
more similar for pixels that are close together than the pixels that are farther from each 
other. The dependency of yield variable to its location can be measured by different 
spatial autoregressive models which was not the measured in this study.

As it was discussed in section 2.6.4, the actual yield is a function of the agriculture 
practices together with the potential yield. Therefore, considering the ratio of actual and 
potential yields, we calculated the agriculture practice index (αÞ. While in this study, the 
potential yield was considered to be a function of limited number of biophysical variables 
together with the age of plantation; the quantified actual yield is a function of far more 
variables at the plantation which some can be controlled by human practices such as 
pests, diseases, terrain correction, resistance genotypes, and supplementary water 
resources. Accordingly, resistance genotype to drought, supplementary water resource, 
and proper land preparation can potentially improve the actual yield in a given situation. 

Figure 11. Reported yields plotted against the provincial mean of (a) HH-HV, (b) HV and (c) HH values 
over oil palm plantations. Each point shows the mean values for different provinces/states in different 
years at the training dataset.

INTERNATIONAL JOURNAL OF REMOTE SENSING 8537



While in contrast, the present of pests, diseases, or any other environmental constraining 
factors can reduce productivity.

Accordingly, pronounced differences were observed at provincial level between 
Indonesian and Malaysian oil palm sectors (Figure 13) where the majority of states in 
Malaysia were identified with α of greater than one, whereas all the provinces in Indonesia 
showed α of less than one. This characteristic was also reported in Varkkey, Tyson, and 
Choiruzzad (2018) where based on the national indicators the authors emphasized that 
Malaysia and Indonesia have developed almost adverse paths to satisfy the global palm 
oil demand. Accordingly, Malaysia has invested more efforts and resources into intensi-
fication which resulted in higher yield at a unit of area, while Indonesia has been more in 
favour of the expansion of the area.

Digging into possible reasons for these differences, we noticed a negative correlation 
(r = 0.25) between the agriculture practice index in each province/state and population of 
the smallholders (Figure 14(a)). The correlation suggests the greater the population of 
smallholder, the smaller the agriculture practice index, and consequently wider YG. This 
confirms other literature in which smallholders have been reported to suffer from a set of 
agronomic and institutional limitation affecting their productivity (Euler et al. 2016; Cramb 
2013; Corley and Tinker 2003). Although the observed correlation was week, the pattern 
was clearer in the case of Indonesia provinces. In 2017, smallholders hold about 46% of 

Figure 12. Estimated oil palm yield gap in Indonesia and Malaysia in 2017. pixels with positive yield 
gap (actual yield greater than potential yield) are presented in blue colour and negative gap (actual 
yield less than potential yield) are presented in red colour. Estimated oil palm yield gap in Indonesia 
and Malaysia in 2017. pixels with positive yield gap (actual yield greater than potential yield) are 
presented in blue colour and negative gap (actual yield less than potential yield) are presented in red 
colour.
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the area under oil palm plantations in Indonesia which is equivalent to 12.3 Mha (Craw 
2019; Indonesian Oil Palm Statistics 2017), where independent smallholders (who manage 
their plantations without being under the supervision of any mill or organization) include 
the majority of this population (Craw 2019). However, Malaysian smallholders hold about 

Figure 13. Agriculture Practice Index in different provinces/states in Indonesia and Malaysia in 2017. 
Indonesian provinces have been identified with I and Malaysian states have been identified with M.

Figure 14. The relationship observed between (a) population of smallholders and (b) GDP per capita 
with agriculture practice index in different provinces/states in Indonesia and Malaysia. All the values 
have been normalized to maximum and minimum. The population of smallholders data in Indonesia 
and Malaysia was retrieved from (Indonesian Oil Palm Statistics 2017) and (Malaysian Palm Oil Board 
Malaysian Oil Palm Statistics 2017). The GDP data in Indonesia and Malaysia were retrieved from (BPS- 
Statistics Indonesia 2017) and (Department of Statistics Malaysia 2017).
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39% of the area under oil palm plantations in 2017 (equals to 2.3 Mha) (Malaysian Palm Oil 
Board Malaysian Oil Palm Statistics 2017), where independent smallholders contribute for 
16.9% of this area (nearly 1Mha). Therefore, the area under independent smallholders’ 
plantations is distinctly different in both countries. Less productivity is a common char-
acteristic of this group of growers. This resulted in a clearer negative correlation between 
the population of smallholders and the agriculture practice index in the case of Indonesia 
in contrast to Malaysia.

We also noticed a positive correlation (r = 0.25) between the agriculture practice index 
and Gross Domestic product (GDP) per capita (Figure 14(b)). Since the agriculture sector 
highly contributes to provinces/states’ GDP, to avoid the covariance effect we only 
considered service and industry as main sources of GDP. Although the observed correla-
tion was week, it confirms that the greater economic advancement can provide better 
agricultural practices which consequently it will lead to yield improvements (Euler et al. 
2016). This pattern was clearer in the case of Malaysian states due to more investment of 
Malaysia on technical-based intensification which relies on economical advancements 
(Varkkey, Tyson, and Choiruzzad 2018).

Given this fact that, in both countries, the population of smallholders is expected to 
grow due to the limited suitable area for future expansion of large plantations (Pirker et al. 
2016), according to observed correlations, we emphasize on the importance of policies 
and initiatives which support smallholders to be more equipped with better agriculture 
practices and technologies. Provided information in this research enables governors to 
directly target specific objectives such as subsidies on fertilizers, productive cultivars, and 
new technologies to support this group of growers to improve their productivity.

4. Conclusion

This study assessed oil palm potential and actuals yields and their gap in each province/state 
in Indonesia and Malaysia leveraging publicly available RS datasets and the computing power 
of GEE in processing. Considering potential growth of oil palm dependent on the site qualities 
and age of plantations, the average potential yield in Malaysia ranges between 13.8 t ha−1 
and 19.3 t ha−1, whereas in Indonesia it ranges between 17.8 t ha−1 and 21.7 t ha−1 in 2017. 
The actual yield in next step, has been quantified by HH-HV attribute of AP/AP2, where the 
average actual yield in Malaysia ranges between 14.48 t ha−1 and 20.63 t ha−1 and in 
Indonesia it ranges between 8.49 t ha−1 and 15.40 t ha−1 in 2017. Uncertainty of potential 
yield estimation was 4.64 t ha−1 year−1 and actual yield was 2.9 t ha−1 year−1.

YG in different magnitude was observed in all Indonesian provinces, notably in Aceh, and 
North Kalimantan. Sabah and Sarawak states in Malaysia were also identified with relatively 
distinct YG in comparison with other states. However, in comparison with the Indonesian 
provinces, the magnitude of YG was smaller in Malaysia. In general, having lower potential in 
yield, majority of Malaysian states achieving higher actual yields at plantations which was in 
contrast with Indonesian case. Decomposing the effect of biophysical suitability of environ-
ment and age after planting on oil palm yield, the observed YG was attributed to the level of 
agriculture practice implementations. Higher economic advancement and a smaller popula-
tion of the smallholders showed to be effective to improve the actual yields. In this study 
remotely sensed data showed great capacity to model potential and actual yields and 
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provided a spatial distribution of each of those yields. However, for future studies following 
concern need to be addressed:

(1) Oil palm distribution should be precisely mapped to retrieve accurate information 
on actual yield and other characteristics involved in potential yield estimation. 
Here, we would like to particularly emphasize on difficulties in the detection of 
newly planted plantations due to small canopy coverage and presence of other 
endmembers in each pixel; as well as old oil palm plantations, where detection is 
challenging due to signal saturation. Finer spatio-temporal resolution is expected 
to improve the quality of mapping oil palm plantations.

(2) The association of L-band SAR HH-HV attribute with reported yield has been used 
to quantify actual yields. However, the reported data have been previously noted 
to inherit some degrees of underestimation due to their collection method 
(Hoffmann et al. 2017; Sadras et al. 2014; Burke and Lobell 2017). Therefore, 
accurately collected actual yield data in different locations will help to improve 
RS derived measurements.

(3) The potential yield in this study was estimated considering different meteorological 
and geomorphological parameters along with the growing model of oil palm. 
Although the biophysical criteria have been selected based on a detailed literature 
review but considering the extensive heterogeneity of the study area estimation of the 
potential yield could remain as a source of debate. Also, our estimation is in the case of 
absence of any other limiting factors such as pest, disease, or soil constraints, while, 
potential yield may differ in the case of the presence of each of these constraints.

(4) To estimate the year of planting, we assumed that oil palm trees have been planted 
in the same year of land preparation, however, we noticed on average three years’ 
time lag between the year of land clearance and oil palm planting in some 
locations (Gaveau et al. 2016) which is needed to be address in the future studies. 
On this, we would like to highlight the importance of ancillary information on the 
age of plantations. Oil palm age information is a crucial missing information layer in 
oil palm yield assessment in both countries. Future studies in large scale oil palm 
age detection are expected to provide useful information on YG management.

We hope this study can contribute to sustainable production of palm oil as it provides 
useful benchmarks for improving the yield. This information are indispensable needs for 
efficient and accountable policies as it enables governors to directly target specific 
objectives such as subsidies on fertilizers, productive cultivars, and new technologies 
for specific plantations suffering the most from low yield.
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