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Abstract: In oil palm crop, soil fertility is less important than the physical soil characteristics. It is
important to have a balance and sufficient soil moisture to sustain high yields in oil palm plantations.
However, conventional methods of soil moisture determination are laborious and time-consuming
with limited coverage and accuracy. In this research, we evaluated synthetic aperture radar (SAR) and
in-situ observations at an oil palm plantation to determine SAR signal sensitivity to oil palm crop by
means of water cloud model (WCM) inversion for retrieving soil moisture from L-band HH and HV
polarized data. The effects of vegetation on backscattering coefficients were evaluated by comparing
Leaf Area Index (LAI), Leaf Water Area Index (LWAI) and Normalized Plant Water Content (NPWC).
The results showed that HV polarization effectively simulated backscatter coefficient as compared to
HH polarization where the best fit was obtained by taking the LAI as a vegetation descriptor. The
HV polarization with the LAI indicator was able to retrieve soil moisture content with an accuracy of
at least 80%.

Keywords: SAR; backscattering; soil moisture content; LAI; HH and HV polarization

1. Introduction

Soil moisture content is a critical input variable in a wide variety of scientific studies
in the field of agriculture. Soil moisture is an environmental element that connects the
Earth’s surface and the atmosphere. When soil moisture levels are balanced, agricultural
yields improve, yield losses due to drought are reduced, and groundwater levels are
recharged, ensuring the continuity of rivers and stream flows [1]. Oil palm trees require a
reasonably steady high temperature, and continuous precipitation all year. Furthermore,
prolonged dry periods of more than 2–3 months do not directly harm vegetative growth
but have a significant impact on the yield and quality of fruit bunches [2]. The yield of oil
palm is highly dependent on the availability of water during the sex differentiation of its
inflorescences, which occurs approximately 28 months before bunch harvest. Soil moisture
is therefore critical for optimal production in the oil palm crop [3]. Plants may be stressed
if there is a water shortage. When water is not a constraint, potential evapotranspiration is
the quantity of water that might be evaporated or transpired at a given temperature and
humidity [4]. Water is a key component of plant tissue and is used to transport metabolites
and minerals inside the plant. Water is also required for cell expansion, whereby it increases

Remote Sens. 2021, 13, 4023. https://doi.org/10.3390/rs13204023 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8134-829X
https://orcid.org/0000-0003-4626-4995
https://orcid.org/0000-0003-4650-8988
https://orcid.org/0000-0002-8389-3363
https://orcid.org/0000-0002-2750-6701
https://orcid.org/0000-0002-9138-6601
https://doi.org/10.3390/rs13204023
https://doi.org/10.3390/rs13204023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13204023
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13204023?type=check_update&version=1


Remote Sens. 2021, 13, 4023 2 of 15

the turgor pressure [5]. Many of the physiological processes related to growth are harmed
by water deficiency in the soil, and severe deficiency may even result in the death of the
plant. The effect of water deficiency, on the other hand, varies depending on the degree and
length of water stress as well as the oil palm’s development stage [6]. Nitrogen, Potassium,
Magnesium, Boron, Copper, and Zinc are said to be essential nutrient components in oil
palm crop soil for maximum growth [7]. The soil system and its activities are governed by
nutrient availability, which leads to greater drought, insect, pest, and disease resistance [8].
Moreover, oil palm fronds have a delicate water transport system, which may expose
them to increasing drought stress when the environment heats and dries [9]. Soil fertility
refers to the soil’s ability to deliver nutrients to the palm, including water availability
for nutrient absorption and yield where soil–water conservation is carried out commonly
to prevent soil erosion beneath mature palms, build terracing and silt pits in steep areas,
mulch with empty fruit bunches and trunk chips, and cultivate leguminous cover crops [10].
Therefore, effective water management is the key to achieving high oil palm yield. As a
result, sufficient soil moisture in the root zones is required, as too little or too much of
it would reduce oil palm yields [11]. Recently, it was found that oil palm crop demands
range from 0.893 to 1.6 million cubic meters; where ultimately, the actual requirement is
site-specific and varies based on the soil moisture deficit, root zone water availability, and
rooting depth [12].

Soil moisture has traditionally been measured directly at sampling places using
gravimetry, which is a highly reliable and therefore often preferred method [13]. The
results from gravimetric methods, however, only reflect a very limited region that changes
instantly as the sampled field changes around the sampling site [14]. Remote sensing,
both active and passive, enables unique studies of soil moisture at multiple spatial scales;
therefore addressing agricultural scientific and application demands [15–17]. In passive
remote sensing, Google Earth-based imageries and Normalised Difference Vegetation
Index (NDVI) were used to determine the effect of land use and change of water storage
in an oil palm plantation by measuring variations in soil water content over time [18].
Plus, the use of the NDVI and the Soil Adjusted Vegetation Index (SAVI) in oil palm
crop to determine plant health by adopting a regression model technique revealed a
highly correlated relationship between plant health based on NDVI analysis and nitrogen
content to SAVI [19]. Additionally, to overcome the lack of soil information for farmers,
a real-time palm oil soil monitoring system was built for Palm Oil Soil Monitoring in a
Smart Agriculture where it can process, transmit, display, and conclude the soil’s state via
smartphone [20].

On the other hand, active remote sensing or SAR sensors are mostly used to assess
soil moisture and crop water usage over broad regions [21]. SAR sensors are capable of
identifying the spatial pattern of volumetric soil moisture due to their ability to penetrate
to a depth of approximately 5 cm below the surface [22]. The depth to which microwaves
penetrate, on the other hand, is mostly controlled by the density of vegetation, the stage of
crop development, and sensor-related factors such as incidence angle, polarization, and
frequency [23]. Recently, SAR sensor usage has increased over time, especially when the
soil dielectric constant shows a linear relationship to the backscatter coefficient in the unit
of decibels [24]. The microwave signals from the HH polarization often penetrate efficiently
in the vegetation while reducing the interactions resulting from trunk or branches when
compared to VV polarization [25]. When the sensor incidence angle was studied, the higher
incident angles provided a better penetration as well as higher accuracy for soil moisture
retrieval for both HH and VV [26]. Additionally, longer wavelengths or L-bands provide an
adequate level of soil moisture sensitivity beneath the majority of plant cover [27,28]. In oil
palm crop, AIRSAR backscattering coefficients were found to initially increase with age and
the oil palm biomass is mentioned to be highly correlated at r = 0.85; where a Gamma filter
of 11 × 11 window discriminates oil palm age classes effectively [29]. Following that, using
the backscatter coefficient of fully polarized ALOS PALSAR data, biomass estimations were
generated for an oil palm plantation in Malaysia and higher correlations were achieved



Remote Sens. 2021, 13, 4023 3 of 15

from VH polarization data [30]. Similarly, the biomass estimation of oil palm plantations
using a regression analysis of HV polarized PALSAR was carried out [31].

A few SAR backscatter modelling techniques have been carried out to explore the
influence of surface-related variables on the backscatter coefficient, such as topography
and vegetation. These models are generally divided into theoretical, semi-empirical and
empirical methods. Theoretical techniques such as the Integral Equation Model (IEM) and
advanced IEM are complex, where the main challenge in assembling model parameters
that accurately characterize the canopy is tough [32] as it requires a large number of param-
eters [33,34]. In addition to that, the empirical methods, for example the Dubois model [35],
are simpler than the IEM models. However, the Dubois model has been reported to be
dependent on experimental site and data conditions [36], where the saturation points were
reported at lower NDVI values [37].

When the semi-empirical method was used, effects of vegetation cover using the
WCM [38] were initially developed and later on were modified [39–41]. WCM is preferred
for its simplicity [42] where it defines the overall backscatter coefficient obtained by the
sensor over vegetated surfaces as the incoherent sum of the effects of vegetation and
soil [43]. In this model, the canopy is often represented as a set of exact variables such as
plant density per area, leaf size and orientation, which complicates and makes the model
hard to interpret [44]. Many factors influence the backscatter coefficients from vegetation
canopies, e.g., size of disperses in a canopy; the shape of scatters in a canopy; the orientation
in a canopy; and the geometry of the canopy cover on ground [32]. To begin with, the WCM
was modelled using plant height and water content of the vegetation layer to allow for the
retrieval of soil moisture [38], and Leaf Area Index (LAI) was subsequently evaluated [45].
Other vegetation descriptors in the WCM were used from various combinations such as
leaf water area index (LWAI), Normalized Plant Water Content (NPWC), vegetation water
mass, and biomass [43,46–48].

The goal of this research is to optimize soil moisture retrieval using the WCM, thereby
reducing the effect of vegetation on the crop-covered soil moisture backscatter coefficient.
The WCM attempts to express vegetation cover scattering and attenuation terms in the
concept through plain vegetation descriptors. Furthermore, a comparison analysis is
performed on the use of the three primary vegetation descriptors, LAI, NPWC, and LWAI,
singly or in combination, in the retrieval of soil moisture from PALSAR-2 data from
Malaysian oil palm trees.

2. Materials and Methods

To recover soil moisture, a basic WCM was used in this investigation. Assuming that
the effect of soil surface roughness on observed backscatter is consistent over a short time
period for a given site, the temporal change in SAR backscattering only reflects changes in
vegetation and soil moisture [49]. As a result, for this investigation, multi-temporal SAR
data were used in the WCM. The vegetation descriptors and actual soil moisture were
determined using field collected data. The Root Mean Square Error (RMSE) and mean
absolute error coefficient were utilized to analyze the soil moisture retrieval accuracy. The
next sections describe WCM, vegetation descriptors used in the model and evaluation of
data processing methods.

2.1. Water Cloud Model (WCM)

WCM was developed assuming that the canopy “cloud” contains identical water
droplets randomly distributed within the canopy [38]. In a water cloud model, the ex-
pression developed incorporated the soil moisture and the vegetation parameters in the
equation. WCM for a given polarization (pp) is given as

σ◦tot,pp = σ◦veg,pp + σ◦soil+veg, pp + τ2
ppσ◦soil,pp (1)

where σ◦tot,pp is the total backscatter coefficient, σ◦veg,pp is the backscatter contribution of
the vegetation cover, σ◦soil+veg, pp is the multiple scattering involving vegetation elements
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and the soil surface, σ◦soil,pp is the backscatter contribution of the soil surface and τ2
pp

is the two-way vegetation attenuation. The second component in Equation (1) reflects
the interaction of incident radiation with the underlying soil. Because the interaction is
not a dominant factor in co-polarized radiation, it may be ignored [43,50]. Subsequent
to the model development, there were studies that modified the mentioned model [45].
WCM, Equation (2) [43], with four empirical coefficients, App, Bpp, Cpp, and Dpp where
App and Bpp are vegetative characteristics and Cpp and Dpp are soil parameters, was
presented for the given polarization where pp is either HH or HV polarization. The
parameter App corresponds to the albedo of the vegetation, and Bpp is an attenuation factor
seen in (3) and (4). The parameter Dpp indicates the sensitivity of the radar signal to soil
moisture, and Cpp can be considered as a calibration constant in (5). Hence, the equation
written for the given polarization where pp is HH and HV is modified to

σ◦tot,pp = σ◦veg,pp + τ2
ppσ◦soil,pp (2)

where
σ◦veg,pp = App ×V1 × cos θ

(
1− τ2

pp

)
(3)

τ2
pp =

(
Exp

(
−2× Bpp ×V2 × sec θ

))
(4)

V1 and V2 describe the effect of canopy water content and its geometry on backscatter
coefficients. Vegetation descriptors have different effects on the WCM model. Therefore,
several experimental studies on different combination of vegetation variables to quantify
V1 and V2 in WCM were conducted by using plant height, LAI, LWAI and NPWC [51].
In Equations (3) and (4), θ is the incident angle of the image used, App and Bpp are the
vegetation parameter. Mv is the volumetric soil moisture and Cpp and Dpp are the soil
parameter in Equation (5).

σ◦soil,pp = Dpp Mv + Cpp (5)

In this study, the LAI of palm fronds is defined by the amount of leaflet surface area
per unit ground area [3]. LWAI is a product of LAI of palm fronds multiplied by the amount
of water (W), expressed as the ratio of the difference between wet and dry mass to wet
mass as in Equations (6) and (7).

LWAI = (LAI ×W) (6)

W =

(
mw −md

mw

)
(7)

where mw and md are field records for freshly plucked and oven-dried mass of vegetation
samples, respectively. Normalised plant water content, NPWC, also plays a dominant
part in attenuating backscatter [38]. NPWC is like Equation (8) but divided with dry mass
instead of wet mass.

NPWC =

(
mw −md

md

)
(8)

In this study, 5 combinations were used to understand the vegetation effects of WCM
by using

Case 1 where V1 = 1 and V2 = LAI
Case 2 where V1 = LAI and V2 = 1
Case 3 where V1 = LAI and V2 = LAI
Case 4 where V1 = LWAI and V2 = LWAI
Case 5 where V1 = NPWC and V2 = NPWC

2.2. Estimating Parameters of A, B, C and D in the WCM

The estimation of parameters Cpp and Dpp are solved using a linear model fitting,
following which, the values of Cpp and Dpp are substituted into Equation (2), which
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allows for parameter App and Bpp to be solved using the Nonlinear Least Squares Method
(NLSM) [51–54]. It was noted that using Levenberg–Marquardt (LM) optimization in
NLSM, an estimation of App and Bpp can be made [55]. According to the optimization, LM
is a common approach for addressing nonlinear least square issues that emerge from fitting
a parameterized function to a collection of observed data points by minimizing the sum of
the squares of the errors between the observed data points and the function output [56].
The LM algorithm is an iterative process which combines the Gauss–Newton method and
the gradient descent method [57].

2.3. Evaluating WCM

To validate the WCM prior to inversing the model for accuracy and estimation perfor-
mance metrics which include the coefficient of determination (R2), the RMSE and the mean
absolute error (MAE) were examined. The RMSE derived using Equation (9) was tested in
most studies [49,55,57,58]. RMSE is a frequently used measure of the difference between
values predicted by a model and the values observed from the environment that is being
modelled. RMSE evaluation is given in Equation (9); Xsim is the simulated σ◦tot,pp, Xobs
is the observed σ◦tot,pp and n is the sample count. These individual differences are also
called residuals, and the RMSE serves to aggregate them into a single measure of predictive
power [59].

RMSE=

√∑n
i=1(Xsim − Xobs)

2

n

 (9)

Together with R2 and RMSE, the MAE was explored to further evaluate the model [60].
MAE is the average magnitude of the errors in a set of predictions, without considering
their direction [61]. It is the average over the test sample of the absolute differences between
prediction and actual observation where all individual differences have equal weight, as
seen in (10)

MAE =
1
n ∑n

i=1|Xsim − Xobs| (10)

3. Study Area and Datasets
3.1. Study Area

The study area of this research was in Chuping district, Perlis state, which comprises
a region of flat-terrain oil palm cultivation. The area mentioned is about 28 ha. It covers
4 years of old palm stands which have just started fruiting. The center point coordinates
of the study area are 6◦31′07.2′ ′ N 100◦19′07.7′ ′ E. In Chuping district, there are seven
sub-districts namely Panggas, Sungai Buloh, Kubang Perun, Guar Nangka, Felda Chuping,
Sungai Buloh, and Kilang Gula Chuping. This research took place at the Kilang Gula
Chuping subdistrict as shown in Figure 1. The field data collected in this research were soil
moisture, leaf moisture content, and leaf area index from frond 17 of the palms. Field data
collection was planned to match the acquisition date of PALSAR-2 as shown in Section 3.2.

In the research site, the soil type was identified as Chuping and Dampar soil series,
where the Chuping soil type is categorized as sandy clay loam with a hue of 7.5–10 YR
(Yellow to Red) following the Munsell color chart standards, and the latter soil type was
identified as clay loam with a hue of 7.5 YR [62]. The site was considered flat topography
with an elevation of 21.6 m while the slope class was identified as 4–12% [63]. As per
the study site, the months of February to March of the calendar year are regarded as the
driest season of the year; with a maximum of 28 days of dry spell every year and an
average of 1362.38 mm of precipitation per year in the years of 2015–2017 [64]. In the
PALSAR-2 image acquisition months, Table 1 shows the monthly meteorological data
obtained from Malaysian Meteorological Department. The observation dates in Table 1
represent the annual weather of the study area where the month of January was observed
to be drier than April and July; however, the Mean Evaporation and Mean Radiation were
similarly recorded.
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Table 1. Meteorological information of study area.

Month Daily Meana
Temperature (◦C)

Total Precipitation for
the Month (mm)

Daily Mean
Radiation (MJm−2)

Daily Mean
Evaporation (mm)

January 27.6 32.4 18.3 5.0

April 29.0 89.4 20.8 5.0

July 27.7 61.2 18.6 4.6

3.2. Data and Processing

PALSAR-2 signals were used for extracting the backscatter coefficient from the oil palm
trees. High resolution scenes of PALSAR-2 were obtained under our collaboration with
the Earth Observation Research Announcement 2 (EO-RA-2) of the Japanese Aerospace
Exploration Agency (JAXA). We used a total of 3 PALSAR-2 scenes in this research, details
of which are given in Table 2.

The acquired PALSAR-2 data were first converted from their Digital Number (DN) to
backscatter coefficients in decibels, dB for both polarizations. Once the σ◦HH and σ◦HV for
each of the field points was available, georeferencing of both images using SRTM (3 Sec)
was done. The Lee filter was applied with a 5 × 5 window size to remove speckle and
noise from the image. All the rectification process was completed in the SNAP open-
source software. Additionally, Unmanned Aerial Vehicle (UAV) imagery was acquired on
17 January 2019 with the spatial resolution of 8 by 8 cm consisting of the red, blue, green,
red edge and near infrared bands. The imagery from the UAV platform allowed us to
compute the NDVI to identify bare soil areas in the field for the calibration process, with
an NDVI value less than 0.2 taken to be bare soil. Ground truthing was done to validate
the bare soil areas.
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Table 2. Details of PALSAR-2 images.

Date of Acquisition Flight Direction Mode Resolution Polarization Incident Angle

17 January 2019 Ascending Strip Map 3 6.25 m × 6.25 m HH + HV 30.4–42.4◦

19 April 2019 Ascending Strip Map 3 6.25 m × 6.25 m HH + HV 41.2–53.3◦

9 July 2019 Ascending Strip Map 3 6.25 m × 6.25 m HH + HV 30.4–42.4◦

3.3. In-Situ Data Collection

The determination of soil moisture content at soil depth 0–5 cm was done using the soil
gravimetric method. Fresh weight of soil moisture collected in field was recorded whereas
the dry weight was determined after oven drying of the soil samples in the laboratory. A
total of 32 points of soil sample were taken at each observation dated 17 January, 19 April
and 9 July 2019, totalling to 96 soil samples altogether.

For the LAI for oil palm trees, a conventional method of destructive sampling was
carried out using Equation (11). The frond to be chosen must not only be a good indicator
of the nutrient status of the palm, but must also be one which is easy to identify and is
consistent. By convention, frond 17 is used commonly in the oil palm fields. It is reported
that frond 17 provides satisfactory results from its use as an input in the LAI formula [65].
According to the localised LAI formula, LAI was determined by the following equation:

LAI =
(

A f × Fn ×
PDEN
10,000

)
m2/m2 (11)

where A f is the leaf area per frond (m2), Fn is the number of fronds per palm; PDEN is the
planting density where the number of palms per hectare is identified. Leaflets from the
one-sided leaflet area were multiplied by two to obtain the total leaflet area of the frond
in this research [66]. All leaflets were brought to the laboratory to determine the leaflet
area using the LI-3100C, LI-COR Inc., which is USA-made equipment. Samples from the
leaflets were taken and oven dried at 70 ◦C for 72 h until constant weight was achieved. An
electronic balance was used to weigh the oven dried leaflets upon the completion of drying
step. Similarly, the LWAI and NPWC were used from the same samples and methods as
seen in Equations (6)–(8).

4. Results and Discussion
4.1. In-Situ Results

Field data collection for the three observation periods was based on the availability of
PALSAR-2 orbit path data acquisition. In situ information was simultaneously collected for
the soil moisture. LAI, LWAI and NPWC were calculated to understand the range values
and average of each component in field. In Table 3, it can be noted that during the January
and April data collection, the soil moisture average was 0.240 m3/m3 whereas the July
data acquisition showed an increase in soil moisture recording at 0.273 m3/m3. Overall,
for the palm trees cultivated areas, the soil moisture at the depths of 0–5 cm was averaged
at 0.251 m3/m3. LAI for the palm fronds was averaged at 1.845 m2/m2 where it was seen
to increase at every observation date, being 1.748, 1.784 and 2.005 m2/m2, respectively,
during the January, April, and July observations dates. For the water content based on LAI
in the palm fronds, an increase on each observation date was observed as well; the January
observation date was at 0.205, 0.353 for the April observation date and 0.396 in the July
observation date. This gave an average of 0.368 for all three observation dates. It can be
noted that the study area faced drought stress in the earlier months of the calendar year
where January to March recorded a lower rainfall [64]. Normalized plant water content
was similar in all the observations at an average of 0.199%.
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Table 3. Summary of in-situ data collection of Soil Moisture, LAI, LWAI and NPWC.

Observation
Date

Soil Moisture (m3/m3) LAI (m2/m2) LWAI (% W in m2/m2) NPWC (%)

Range Mean Range Mean Range Mean Range Mean

17 January 2019 0.075–0.419 0.240 0.680–3.251 1.748 0.123–0.532 0.205 0.169–0.228 0.205

19 April 2019 0.170–0.316 0.240 0.662–3.174 1.784 0.125–0. 668 0.353 0.185–0.233 0.198

9 July 2019 0.119–0.454 0.273 1.214–3.078 2.005 0.076–0.661 0.396 0.052–0.221 0.195

Overall 0.075–0.454 0.251 0.661–3.251 1.845 0.076–0.668 0.368 0.052–0.233 0.199

4.2. Water Cloud Model Parameterization

The WCM model parameterization values were calibrated using bare soils and veg-
etation points from the NDVI values, derived from the RGB-NIR data obtained from
UAV data acquisition, to fit the WCM model with the ground range values. Table 4
shows the vegetation parameters, App and Bpp and the soil parameters Cpp and Dpp for
the given polarization together with the combination indicator that represents the simu-
lated scenarios of Cases 1–5. Using these vegetation and soil parameters together with
LAI, LWAI, and NPWC as the input values, the WCM model was able to replicate the
backscatter coefficients.

Table 4. WCM PALSAR-2 polarization calibration parameters for oil palm trees and combination
vegetation descriptors used in this study.

Image
Polarization

Combination
Indicator

Vegetation Parameters Soil Parameters

App Bpp Cpp Dpp

HH

Case 1 0.0118 0.0006 −26.0150 −2.8638

Case 2 0.2188 0.0027 −26.0150 −2.8638

Case 3 0.8467 0.0134 −26.0150 −2.8638

Case 4 0.7122 0.0063 −26.0150 −2.8638

Case 5 0.7457 0.0089 −26.0150 −2.8638

HV

Case 1 0.0850 0.0011 22.2070 −23.8660

Case 2 0.1634 0.0047 22.2070 −23.8660

Case 3 0.2530 0.0019 22.2070 −23.8660

Case 4 0.4193 0.0321 22.2070 −23.8660

Case 5 0.0182 0.0751 22.2070 −23.8660

4.3. Backscatter Simulation Based on the Proposed Vegetation Descriptors

Backscatter coefficients at frequency range of C and X bands are dominated by scatter-
ing activities in the crown layer of branches and foliage in the canopies, whereas scattering
processes involving substantial trunks and branches would be dominated at lower frequen-
cies like P and L bands [67]. In this study, the L band from PALSAR-2 was considered to
give a better penetration in oil palm tree structure where backscatter coefficient charac-
terizes the nature of oil palm structure. It was reported that oil palm trees using L band
were capable to penetrate to the basal trunk in the oil palm plantation using both HH and
HV polarizations [68]. Using the WCM model, the backscatter coefficients were simulated
using a combination of vegetation descriptors. These simulated backscatter coefficients
were then compared with the image-derived backscatter where the observed backscatter
values were extracted from PALSAR-2. Table 5 shows the comparison of the backscatter
coefficients observed and simulated for the study site. Both HH and HV polarizations
showed a positive indication of a fitted WCM model using the respective vegetation de-
scriptors where R2 values ranged from 0.823 to 0.998, indicating the regression model fits
the observed data well. In most HV polarization, the regression was found to be higher
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than HH polarization using the WCM model. On the evaluation of the RMSE and MAE, it
was found that the errors were minimized in the HV polarization.

Table 5. Metrics comparison between observed and simulated backscatter coefficients from WCM
for HH and HV polarization with respect to the vegetation descriptors.

Description (n = 96)
Case 1 Case 2 Case 3 Case 4 Case 5

HH HV HH HV HH HV HH HV HH HV

R2 0.962 0.997 0.956 0.965 0.823 0.998 0.919 0.995 0.969 0.951

RMSE (dB) 2.259 0.222 2.266 0.782 2.384 0.158 2.222 0.387 2.256 0.351

MAE 1.821 0.212 1.814 0.212 1.872 0.150 1.789 0.366 1.811 0.280

Using the LAI vegetation descriptor, the Case 3 where LAI was used in both V1 and
V2, HV showed the highest R2 value of 0.998 with a lowest RMSE of 0.158 dB, indicating
an efficient estimation of simulated backscatter coefficient. In comparison, HH showed
a lower R2 value of 0.823. Based on the RMSE and MAE evaluation, HV recorded more
accurate values of 0.158 dB and 0.150 for RMSE and MAE, respectively, when compared to
HH polarization which had values of 2.384 dB and 1.872 for RMSE and MAE, respectively.
In the Case 1 where V1 = 1 and V2 = LAI, the HV polarization was more efficient to the
simulate the backscatter coefficient with RMSE 0.222 dB and R2 = 0.997. However, the HH
polarization, even though it shows good R2 of 0.962, had higher RMSE with 2.259 dB. Using
the LAI indicator as V1 and V2 as 1, both HH and HV polarizations showed a good R2 with
0.956 and 0.965, respectively, but the RMSE was lower by 1.584 dB in the HV polarization.
The MAE gave lower values for the HV polarization with 0.212. In Case 4 using LWAI,
the model accurately predicted the simulated backscatter with R2 = 0.995 in the HV with
0.387 dB RMSE and MAE of 0.366. When the NPWC vegetation descriptors was evaluated
for HH polarization, its R2 value of 0.969 was higher than the HV polarization R2 of 0.951,
but the MAE in HV polarization was computed to be lower than HH polarization by 1.531
and RMSE by 1.905 dB, which means the latter polarization is more accurately simulated.
It is important to note that in the LAI combinations of the vegetation descriptors, dual use
of LAI was found to be the most accurate parameter to simulate backscatter coefficient
values. Furthermore, it is critical to produce an accurate simulation of the backscatter
coefficient since it can convey the actual field range values obtained during the in-situ
collection utilizing the model. This understanding is important to allow future work to be
carried out with minimal calibration values and adopted into large areas of plantations
where it is remotely challenging to access the collected field data and senses.

4.4. Vegetation Effects on Soil Moisture Retrieval Based on Polarization

Vegetation descriptors play an equally important role in the estimation of the backscat-
ter coefficient as well as providing reliable information to showcase the ground parameters
in the WCM model. The backscattering coefficient mechanism interaction with soil mois-
ture is complex [69]. Recently, in an attempt to reduce complexity in the modified IEM, the
soil parameters were being simplified from three to two soil parameters [70]. Earlier studies
have demonstrated the necessity to eliminate the effects of vegetation on soil moisture
retrieval [71]. It was discovered that soil moisture retrieval is much more accurate when
vegetation cover is considered [72]. To further explore the backscatter coefficients derived
in Section 4.3 with different vegetation descriptors, the soil moisture was retrieved from
the backscatter to allow comparison of observed soil moisture in the oil palm study area.
It was seen that the simulated backscatter coefficient was predicted from the ground soil
moisture values accurately given the observation period variability of lesser rainfall in the
January observation when compared to the other observations. By making comparisons
with the soil moisture retrieved from PALSAR-2 images, the model can be cross-evaluated
to see the model fitting using the WCM. The vegetation descriptors evaluated as men-
tioned by Cases 1–5 can be seen in Table 6. In this comparison between the retrieved and
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observed soil moisture values, we have the best case with the highest R2 value of 0.805 and
the lowest RMSE of 0.046 m3/m3. When looking at Case 1 for HV polarization, the soil
moisture retrieved was plotted against simulated backscatter coefficient where the R2 was
demonstrated at 0.916, as seen in Figure 2. Similar accuracy was achieved using Radarsat-2
utilizing the LAI descriptor, whereby RMSE of 0.069 m3/m3 was reported [73]. The initial
combination introduced in the WCM [38], with V1 as 1 and V2 as LAI providing the most
promising soil moisture retrieval in the oil palm trees in this study, as seen in Figure 2.
LAI parameter was evaluated as one of the best parameters when VV polarization was
compared to LWAI and NPWC, with 4.19–4.43% of the RMSE [51]. Signal backscattering is
influenced by canopy structure where it is very sensitive to plant water content, a variable
highly correlated with LAI during the vegetative phase [74].

Table 6. Comparison between statistical parameters of retrieved and observed soil moisture for HH
and HV polarization in relation to the vegetation descriptors.

Image Polarization Description (n = 96) Case 1 Case 2 Case 3 Case 4 Case 5

HH R2 0.598 0.512 0.490 0.727 0.558
RMSE (m3/m3) 0.088 0.091 0.101 0.085 0.089

MAE 0.070 0.072 0.080 0.069 0.071

HV R2 0.805 0.609 0.675 0.459 0.301
RMSE (m3/m3) 0.046 0.057 0.051 0.066 0.075

MAE 0.043 0.047 0.044 0.050 0.058
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It can be observed that the Case 4 using LWAI as vegetation descriptors, using HH
polarization gave an R2 value of 0.727 where the RMSE was found to be 0.085 m3/m3, the
HV polarization recorded a lower error with an RMSE value of 0.066 m3/m3 with R2 value
of 0.727. In contrast, the lowest R2 value of 0.301 was from the NPWC case where RMSE was
observed at 0.075 m3/m3. Figure 3 shows the observed soil moisture based on polarization
of PALSAR images. It can be noted that the HV polarization gives better lower RMSE
values as compared to HH polarization, considering all the vegetation descriptors [75]. It
was reported that HH polarization could provide a low RMSE value of 0.049 m3/m3 [71]
using remote sensing-based vegetation descriptors, in this case Normalized Difference
Infrared Index (NDII). Similarly, when canopy water content based on LAI was applied
as a vegetation descriptor, an RMSE of 0.039 was recorded [53]. Overall, when RMSE and
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MAE are carefully evaluated, the cross-polarized HV backscatter coefficient is revealed to
be more vulnerable than the co-polarized backscatter HH in terms of polarization response
in all Cases 1–5 observed.
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Our research results need to be interpreted with respect to the age of the oil palm
stands which were 4 years old and our terrain type, whereby the terrain in our study
was considered flat and the backscatter intensity represented in the acquired images was
a composition of interactions with the crown, the trunk, and the ground surface of the
current palm stands. However, it is known that oil palm crop growth or biomass increases
over years, hence it is recommended that larger data sets need to be collected from the
field to represent greater diversity of palm ages, possibly using fully polarimetric SAR
data. Specifically, an understanding of the effects of backscattering on undulating grounds
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and peatlands in oil palm growing areas will be helpful in future. This could help in
understanding the influence of SAR on other variables of importance to the oil palm
industry, such as estimation of vegetation water content of oil palm canopy and yield.
Benefits of this research can be useful for the plantation industry especially with the
increase in available high-resolution multi-polarization satellite SAR sensors. This allows
for the possibilities in exploiting the use of oil palm crop-related parameters supported
with satellite data input to a decision-making platform for oil palm plantations.

5. Conclusions

In this study, L band from PALSAR-2 observations and in-situ data collected were
used to evaluate a WCM model for soil moisture retrieval in oil palm cultivated regions.
The WCM was calibrated using NDVI values, then fitted to a WCM model by different
instances of vegetation descriptors to evaluate the best fit for the model. Using the WCM
model and LAI specifically as V1 and V2, it was found to provide the best simulated
backscatter coefficient in the HV polarization, secondly followed by V1 which is set as
constant with a value of 1 and V2 as LAI. For HV polarization, LAI specifically as V1 and
V2 showed an R2 of 0.998 in simulating the backscatter coefficient accurately with RMSE
of 0.158 dB, whereas HH polarization showed a lower R2 of 0.823 with a higher RMSE of
2.384 dB. However, when LWAI and NPWC were considered, the model fitted better with
co-polarized backscatter, where HH backscatter coefficient records R2 of 0.727 and 0.558,
respectively. It can be said that the co-polarized backscatters have shown lower RMSE
values in the model fit for all cases where it can be predicted to be more useful in retrieving
soil moisture in oil palm cultivated areas. In this respect, this research makes a useful
and novel contribution on soil moisture for the benefit of the oil palm cultivation, and we
found the PALSAR-2 sensor data beneficial for this purpose. The findings of this research
will eventually help the oil palm growers to have systems in place to address the abrupt
droughts brought about by climate change. Future work of this research can be explored
with SAR-based vegetation descriptors, e.g., Radar Vegetation Index and optical derived
indices such as NDVI, Normalised Difference Water Index and NDII.
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