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Abstract: Tropical peatland in Southeast Asia has undergone rapid degradation and shows large
subsidence due to oxidation and peat shrinkage. The measurement of those deformations is thus
valuable for evaluating the peat condition and assessing peat restoration. The time series interferomet-
ric synthetic aperture radar (TInSAR), especially with the small baseline subsets (SBAS) method, is
capable of measuring long-term deformation. However, the dynamic surface scatterers often change
in tropical peatland, which degrades the coherent scatterer (CS) distribution density. This article
presents a simple and efficient TInSAR approach that enhances the CS density under such dynamic
surface scatter variation based on the SBAS method. In the presented approach, a long-time series
of single-look complex images is separated into subsets, and deformation estimation is performed
for each subset. The effectiveness of this simple solution was investigated by InSAR simulation
and validated using SAR observation data. We applied the subset SBAS approach to the three-year
Sentinel-1A C-band SAR dataset acquired over tropical peatland in Indonesia. The analyses showed
an improved number of CSs for the introduced subset approach. We further introduce the color
representation of CS temporal behavior per subset for visual interpretation of scatterer change.

Keywords: Synthetic aperture radar; InSAR; SBAS; Tropical peatland; Peatland subsidence

1. Introduction

Peatland plays a critical role in carbon cycling, hydrology, and biodiversity and con-
tributes to terrestrial carbon storage [1]. However, tropical peatland in Southeast Asia has
undergone rapid degradation due to land conversion to agriculture, such as commercial oil
palm and paper pulp tree plantations, since the 1970s [2,3]. Because deforestation associated
with land transformation raises soil temperature and increases the number of drainage
canals, a large area of tropical peatland has been drained, resulting in a decrease in the
groundwater level (GWL) [4]. Such degradation accelerates peat microorganism oxidation
(microbial decomposition) due to the increase in temperature and aeration together with a
massive release of CO2 into the air and increasing peat fire risk. As the GWL decreases, trop-
ical peatland subsides due to oxidation and peat shrinkage (consolidation and compaction).
The peat subsidence associated with oxidation shows irreversible long-term behavior that
usually continues for decades [5]. Moreover, peat shows short-term reversible deformation
(peat oscillation) in response to climatic variations (i.e., changes in GWL) [6]. Therefore,
measurement of both long-term and short-term peat surface deformation is valuable for
evaluating the peat condition and assess peatland restoration [5].

Remote Sens. 2022, 14, 5825. https://doi.org/10.3390/rs14225825 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14225825
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-9138-6601
https://orcid.org/0000-0002-4036-6854
https://doi.org/10.3390/rs14225825
https://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/14/22/5825?type=check_update&version=3


Remote Sens. 2022, 14, 5825 2 of 22

Spaceborne synthetic aperture radar (SAR) is capable of regional-scale and regular data
collection for surface deformation measurement and can reveal long-term dynamics using
time-series interferometric SAR (TInSAR) [7]. TInSAR is a powerful geodetic technique to
derive the temporal evolution of surface deformation. A series of repeated SAR images are
taken into account in order to enable TInSAR to reduce atmospheric noise, orbital error, and
spatio-temporal decorrelation. Some studies have used the TInSAR technique to monitor
tropical peatland subsidence. Zhou et al. prepared a subsidence map for central Kalimantan
in Indonesia derived from L-band ALOS PALSAR data and revealed restoration effects
in the subsidence results [8]. Furthermore, Hoyt et al. computed large-scale (2.7-Mha)
subsidence across Southeast Asian peatland from 2007 to 2011 with ALOS PALSAR data
and quantified the widespread peat carbon loss due to oxidation [9]. The research in [10,11]
revealed subsidence over peat-dominated Bengkalis Island in Indonesia using ALOS-2
PALSAR-2 data. Sentinel-1 C-band SAR data can also allow mapping of subsidence and
were applied to tropical peatland in [10,12,13].

A number of TInSAR algorithms are available [7], and they can be categorized into
three groups [14]. The first group is the persistent (point) scatterer (PS) approach that
exploits continuously phased stable scatterers, usually corresponding most often to one
dominant scatterer in the resolution cell [15,16]. The PS approach is therefore well suited
for man-made targets in urban areas. The second one is the distributed scatterer (DS)
approach, which relaxes the strict limit on the PS approach and treats a sufficiently large
group of adjacent pixels sharing the same scattering mechanism using a redundant network
of interferograms [14]. The DS approach can be applied to distributed natural areas, which
are generally affected by high temporal decorrelation due to vegetation. The third one is a
hybrid approach that accounts for both PS and DS [17,18].

Due to the great demand for deformation monitoring over natural distributed terrain,
many DS approaches have been proposed so far, which can be categorized based on the
interferogram network for deformation inversion. The first one uses all possible interfero-
grams of employed SAR single-look complex (SLC) images (full network approach) [19]
and estimates the deformation by the maximum likelihood estimator [18] or eigenvalue
decomposition of the covariance matrix [20,21]. The second one uses part of all possible
interferograms characterized by small spatio-temporal baselines, called small baseline
subsets (SBAS), and estimates phase time series by least-squares (LS) estimation of a series
of unwrapped phases [22,23]. Compared with the full interferogram network approach,
SBAS is considered an efficient method for fast decorrelated pixels [24].

The adaptivity and accuracy of the TInSAR approach highly depend on the application
and targets. When we aim to measure surface deformation over vegetated terrain, the SBAS
seems to be one of the best solutions. Yunjun et al. proposed a new SBAS routine workflow
with two improved phase unwrapping error correction algorithms [24]. This workflow
selects coherent scatterers (CS) based on temporal coherence as a reliability measure to
include not only decorrelation noise but also possible phase unwrapping errors. It was
implemented as open-source software, named Miami InSAR time-series software in Python
(MintPy) [24].

Here, we address monitoring peatland surface deformation in high temporal sampling.
For this reason, we employed the Sentinel-1 C-band SAR satellite using the SBAS method.
However, due to the dynamic surface scatterer changes, a direct adaptation of SBAS to
tropical peatland is problematic. One example of the cause of such surface scatterer changes
is a peat forest fire that transforms dense vegetation to bare ground or sparse vegetation.
Such an event leads to an abrupt change in the scatterers. Other examples are farming or
small-holder and industrial-plantation (e.g., oil palm and pulp tree) areas that exhibit a
growth cycle, leading to evolutionary changes in vegetation scattering mechanisms.

As the duration of InSAR observations has increased over tropical peatland areas,
some interferograms may suffer from the effects of inevitable surface scatterer changes.
The abrupt and evolutionary changes in scatterers lead to decorrelation, systematically
decreasing the number of CSs. Those scatterers may exhibit reasonable coherence during
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part of the time series. Such scatterers are referred to as temporary coherent scatterers
(TCSs) [25]. The change time detection methods can identify coherent intervals. A number
of methods have been proposed in the literature to statistically detect TCSs and identify
coherent intervals [26–30]. Those TCS detection approaches were recently extended to the
PS interferometry (PSI) framework. Hu et al. proposed a PSI method incorporating TCS [25].
Following this work, Nils et al. proposed integrating TCS into a PSI with iterative parameter
estimation and phase unwrapping approaches. Although those developed algorithms
provide an adaptive solution to scatterer change timing detection, it is computationally
inefficient to process a large number of SLC images in deformation monitoring and is not
tailored for the SBAS method. In addition, evolutional changes that occur in vegetated areas
were not taken into account because previous studies considered only abrupt changes.

In the present work, we developed a simple and efficient approach based on SBAS to
increase the density of CSs for tropical peatland deformation monitoring. The approach
separates a long-time series of SAR images into several subsets. To our knowledge, incor-
porating the TCS concept into SBAS has not been discussed in any publications. Our intent
is, therefore, to demonstrate the effectiveness of the temporal subset concept for SBAS
and the applicability of the simple yearly based subset strategy based on the knowledge
of seasonal and evolutional scatterer change. The solution was investigated by InSAR
simulation and validated with tropical peatlands in Indonesia. We estimated a three-year
tropical peatland surface deformation time series in the late 2010s (January 2018–January
2021) by our approach using Sentinel-1 C-band SAR data.

2. Dynamic Scatterer Changes in Tropical Peatland
2.1. Study Area

We measured peatland deformation in seven Sentinel-1A frames over Kalimantan
(Indonesian part of Borneo Island) and Sumatra (Indonesia) from January 2018 until Jan-
uary 2021, as depicted by black rectangles in Figure 1. Those seven frames overwrap six
Indonesian provinces: (1) Central Kalimantan, (2) South Kalimantan, (3) West Kalimantan,
(4) Riau, (5) Jambi, and (6) South Sumatra. Peatlands on both islands are generally dome-
shaped and restricted to lowlands, with elevations of less than 50 m above sea level [31],
distributed over coastal regions. For the purpose of visualizing the study area, we display
Landsat 8 true color optical images (RGB: bands 4, 3, and 2) of each frame in Figure 2,
where those are the median images of two-year composite data (January 2018–January
2020) processed on Google Earth Engine (GEE).
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Figure 2. Landsat 8 true color images of each frame (RGB: bands 4, 3, and 2). (a) Frames 1, 2, and 3.
(b) Frame 4. (c) Frame 5. (d) Frames 6 and 7.

The precipitation variability in Indonesian peatland is strongly affected by the El
Niño–Southern Oscillation [32] and Indian-Ocean dipole (IOD) [33]. El Niño (warmer sea
surface temperature in the Eastern Equatorial Pacific) and positive IOD (warmer sea surface
temperature in the western Indian Ocean) events cause rain deficits during the dry season
in Indonesia from May until October, leading to a decrease in GWL and an increase in forest
fires, followed by haze pollution, carbon emissions, and subsidence. A positive IOD began
around May 2019 and peaked around October 2019 during the observation period [34].

Figure 3a reveals the time series of rainfall and GWL at Palangka Raya city within
Frame 1. We display the estimated GWL based on the procedure proposed by Takeuchi
et al. [35,36]. The GWL is estimated by a modified Keetch-Byram drought index using
satellite-based remote sensing products, including the Global Satellite Map of Precipitation
(GSMaP), for daily rainfall rday (mm/day) and annual rainfall ryear (mm/year), as well as
the Advanced Himawari-8 Imager for maximum daily land surface temperature (LSTmax).
The rainfall time series in Figure 3a is derived from GSMaP products. In addition, we
display in Figure 3b the number of fire hotspots per day produced by the MODIS Collec-
tion 6 active fire/thermal hotspot products, which were downloaded from NASA’s Fire
Information for Resource Management System. We only use the fire hotspot data with a
confidence level of ≥80% distributed across Indonesia. Figure 3 indicates that the GWL
decrease during the dry season in 2019 was more severe and shows the highest number
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of fire hotspots during this time due to the positive IOD. Figure 3 also shows the clear
seasonal temporal trend of GWL (rainfall) and fire hotspots in Indonesia.
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Figure 3. Time series of rainfall, GWL, and the number of fire hotspots from January 2018 to December
2020. (a) Rainfall and estimated GWL at a single point (latitude/longitude: −2.23/113.825) near
Palangka Raya city within Frame 1. (b) Number of daily fire hotspots over the study area during the
investigated period.

2.2. Dynamic Scatterer Changes

The massive fire events in Figure 3b in the study area modified the peat surface
conditions. As an example of surface change by fire in 2019, we show normalized dif-
ference vegetation index (NDVI) images of the east part of Jambi city within Frame 6
(latitude/longitude: −1.63/103.94) for 2018, 2019, and 2020 in Figure 4a–c, where the NDVI
shows a higher value for dense vegetation cover. Each NDVI is computed using a mean
of the yearly composite of Sentinel-2 optical images to mitigate cloud effects as much as
possible, and processed on GEE. Figure 4a–c show a significant decrease in the NDVI from
2019 to 2020, which was caused by vegetation loss due to fire events during the dry season
in 2019. The mean values of the NDVI within the red polygons in Figure 4a–c are 0.56, 0.56,
and 0.39 for 2018, 2019, and 2020, respectively.
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We further investigated the temporal SAR phase response in the fire-burned area of
the red polygons in Figure 4c. To quantify the temporal phase stability (signal similarity
between adjacent SLC images in the temporal domain), we measured spatial coherence,
because it shows good correlation with NDVI [37], defined as

γsp =

∣∣∣∣∣∣
〈

sjsj+1∗
〉

√〈
sjsj∗

〉√(
sj+1sj+1∗)

∣∣∣∣∣∣, j = 1, . . . , N − 1 (1)

where sj (reference image) and sj+1 (secondary image) are complex values corresponding
to the same pixel forming an interferogram and 〈·〉 indicates the ensemble averaging with
the assumptions of stationarity and the ergodicity performed by spatial averaging. In
Figure 5a, we show the spatial coherence time series derived by the adjacent co-registered
SLC images (e.g., the result on 17 January is estimated by images observed on 5 January
and 17 January with a shortest temporal baseline of 12 days). Those values are averaged
over the red polygons shown in Figure 4a–c. Figure 5a clearly shows an abrupt coherence
increase from around Sepetember 2019. Derived mean coherence values for each year are
0.69, 0.74, and 0.93 for 2018, 2019, and 2020, respectively. In the C band, high temporal
decorrelation is expected over the vegetation area due to the higher variation in the motion
of vegetation [38]. The abrupt coherence changes in Figure 5a indicate that the fire event in
Jambi modified surface scatterers from vegetation to bare peatland. Note that a coherence
fluctuation given in the results might be caused by a surface reflectance difference between
two SAR images due to rainfall.
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Figure 5. Time series of average spatial coherence. (a) Spatial coherence averaged over the red
polygons in Figure 4a–c. (b) Spatial coherence averaged over the red polygons in Figure 4d–f.

Oil palm plantation fields in West Kalimantan (latitude/longitude: −0.10/10.73) are
another example of a change in scattering phenomena during observation. Figure 4d–f
shows the yearly NDVI images for palm plantations of West Kalimantan in Frame 4. Mean
NDVI values computed for the red polygons in Figure 4d–f are 0.50, 0.60, and 0.65 for 2018,
2019, and 2020, respectively. As mean NDVI values show an increasing trend, the growth
of oil palm plantations and physical morphology changes in height and leaf structure are
expected. The spatial coherence temporal behavior was also investigated and shown in
Figure 5b, where those values are averaged over the red polygons in Figure 4d–f. The result
reveals a decreased evolutional coherence trend, where the coherence drops from January
2019 and becomes gradual from January 2020. Consequently, the mean coherence in 2020 is
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0.46, while those in 2018 and 2019 show high and moderate coherence values of 0.84 and
0.68, respectively.

3. Methodology
3.1. Time Series InSAR Processing

We processed three years of Sentinel-1A SLC data (C-band center frequency: 5.405 GHz)
from January 2018 to January 2021 with 12-day intervals. The observation mode was an
interferometric wide swath mode achieved by terrain observation by progressive scan [39].
We used vertical-vertical polarization in this study. To generate co-registered and phase-
unwrapped interferogram stacks, we employed the stack sentinel processor in ISCE2
(https://github.com/isce-framework/isce2 (accessed on 2 August 2021)) [40]. A network-
based enhanced spectral diversity approach was applied to Sentinel-1A images in ISCE2
for high-precision co-registration of SLC images [40]. For interferogram generation, we
used a sequential interferogram network that pairs interferograms with their three nearest
neighbors forward in time. An example of an interferogram network for Frame 3 is
shown in Figure 6. Although this network with three nearest neighbors results in a 36-day
maximum temporal baseline for a 12-day interval, some of our interferograms are paired
with a 48-day temporal baseline due to missing SLC images.
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CS selection
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Figure 6. Process flow in the SUBSET method. In this example, the three-year time series SAR dataset
is separated into three single-year datasets (2018, 2019, and 2020). The interferograms are formed
by SLC images corresponding to each subset through a sequential network. This figure uses the
perpendicular baseline and observation date of Frame 3 as an example.

We then performed multi-looking for each interferogram by 23 in the range (~100-m
resolution) and 7 in the azimuth direction (~100 m resolution), and applied the Goldstein
filter with a strength of 0.5. At the last stage of the stack sentinel processor, the SNAPHU
algorithm was applied for phase unwrapping [41]. MintPy further processed a stack of
phase-unwrapped interferograms generated by ISCE2 to produce a deformation time series.

For our processing, a reference point (point with known deformation) was set at Global
Navigation Satellite System (GNSS) observation positions installed by the Geospatial Infor-

https://github.com/isce-framework/isce2
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mation Agency (BIG) of Indonesia [42]. The positions of this GNSS station are displayed
as white circles in Figure 1. Therefore, all deformation values are referenced to a selected
GNSS location. When a small deformation was found at some GNSS sensors, we subtracted
the deformation at the GNSS sensor from the estimated time series deformation values of
the corresponding InSAR frame. Because Frame 2 does not contain a GNSS station, we set
a reference point at Sampit city (latitude/longitude: −2.54/112.96) in Central Kalimantan
for Frame 2, assuming no deformation at Sampit city during the observation period.

Considering that M interferograms are generated by N SAR images, the i-th generated
phase-unwrapped interferogram for each pixel can be modeled as

∆φi = ∆φi
defo + ∆φi

APS + ∆φi
topo + ∆φi

res + 2πni
amb, i = 1, . . . ., M (2)

where ∆φi
defo denotes the phase difference due to deformation, ∆φi

APS denotes the atmo-
spheric phase screen (APS) caused by temporal changes in tropospheric refractivity, ∆φi

topo

denotes the residual topographic phase due to digital elevation model error, ∆φi
res denotes

decorrelation phase noise, and ni
amb denotes the integer phase ambiguity due to phase

unwrapping error. MintPy further corrected the phase unwrapping error, atmospheric
phase ∆φi

APS, and topographic phase error ∆φi
topo to precisely estimate the deformation

phase term.
For spatio-temporal phase unwrapping, we applied two types of methods in MintPy:

(1) the bridging method and (2) the phase closure method, both proposed in [24]. The
bridging algorithm aims to estimate the integer phase ambiguity between “reliable regions”
(one of the outcomes from SNAPHU [41]), which are a group of pixels believed to be free
of relative local unwrapping errors [24]. This algorithm spatially corrects phase unwrap
error based on the assumption that the phase difference between two reliable regions is
less than π rad. In the temporal domain, the phase closure method estimates the integer
phase offset based on the consistency of triplets of the interferometric phase.

After phase unwrap error correction, the interferometric phase in matrix form for each
pixel can be given as

∆φ = A·φ+ ∆φres, (3)

where ∆φ is the [M×1] vector of the interferometric phase, A is the [M×(N-1)] design
matrix, φ is [(N-1)×1] vector of raw phase (Œ2, Œ3, . . . ., ŒN), and ∆φres is the [M×1]
vector of the residual phase. Note that the initial phase φ1 is removed from the system in
(3) so that all raw phase values become relative measures referenced to φ1. The system in
(3) is solved by weighted least-squares (WLS) solution, and the raw phase time series can
be given by

φ̂ =
(

AT ·W·A
)−1

AT ·W·∆φ, (4)

where W is an [M×M] square diagonal matrix that contains the inverse of the phase
variance W = diag

{
1/σ2

∆φ1 , 1/σ2
∆φ2 , .., 1/σ2

∆φM

}
[43]. The quality of the inverted phase is

then evaluated by the temporal coherence lying in the interval (0, 1) defined in each pixel as

γtp =
1
M

∣∣∣ITej(∆φ−Aφ̂)
∣∣∣, (5)

where I is an [M×1] identity matrix. Note that the decorrelation noise, residual phase
unwrapping error, and phase contribution due to changes in scatterer properties (e.g., soil
moisture) will degrade the γtp. The pixels with γtp higher than the predefined threshold of
0.65 were selected as CSs in our processing. Note that this threshold value was empirically
determined in this study.

The nuisance terms of atmospheric phase error and topographic phase error are
included in the derived raw phase time series in (4), which need further compensation.
Global Atmospheric Models were used to estimate the atmospheric phase delay using
re-analysis ERA5 data [44]. The residual topographic phase was corrected by the method
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in [45]. Once those nuisance terms were corrected, we obtained compensated raw phase
time series vector φ̂comp, which is expressed as the sum of the deformation phase vector
φdefo and residual phase error vector φres.

Finally, line-of-sight (LOS) deformation dLOS was converted into vertical deformation
dv by dv = dLOS

cos(θinc)
, where dLOS = −λ

4π φ̂comp and θinc denotes the incidence angle.

3.2. Temporal Subset SBAS Processing

We found a dynamic change in surface scatterers over the study area, mainly due to
seasonal massive fire events and vegetation growth. As the observation period progresses,
inevitable changes in scatterers are likely included in a series of SAR images. Such scatterer
changes modify the noise level; hence, both decorrelated and less-decorrelated terms exist
during the observation period, showing limited intervals of phase stability. In this case,
although high phase stability was found in a specific period, the part of the data with
high decorrelation would have degraded the overall γtp. Consequently, such pixels were
often rejected as CS when the whole datasets were simultaneously processed, leading to a
spatially sparse density of deformation monitoring. The possible solution to this problem
is to separate a series of SAR data into decorrelated and less-decorrelated periods, followed
by evaluating γtp for each separate data series. The timing of separation and the number of
subsets highly depend on the pixels. A pixel-based adaptive approach can be considered;
however, it carries a high computational burden because it evaluates each pixel. In this
study, we applied the same data separation criterion to all the pixels, that is, the subset
separation timing and the number of subsets were identical for all pixels.

After subset separation, interferograms were formed by SLC images of the correspond-
ing subset through a sequential network. In our case, a stack of co-registered unwrapped
interferograms was first generated, then the interferograms corresponding to the subset’s
SLC images were extracted. Figure 6 schematically demonstrates this approach in the case
of subsets divided by year. Subsequently, the WLS inversion was repeated for each subset.
The temporal coherence of the k-th subset is given as

γk
tp =

1
MΩ

∣∣∣∣IkTej(∆φk−Akφ̂k)

∣∣∣∣, k = 1, 2, . . . ., K (6)

where Ω is the set of SLC images corresponding to the k-th subset and MΩ denotes the
number of interferograms formed by Ω. The deformation time series is then estimated at
selected CSs with atmospheric phase and topographic phase error corrections.

Consequently, we obtained a different number of CSs for each subset. The pixels that
show CSs from the first to last subset are referred to as “continuous CS (CCS),” while the
pixels that show CSs for only part of subsets are referred to as “TCS” in our approach. To
distinguish this approach from the conventional method that has no subset separation,
hereafter, the proposed temporal subset SBAS approach is referred to as SUBSET, while the
conventional method is referred to as WHOLE.

3.3. Evaluation of SUBSET with a Simulated Environment

The impacts of the subset separation timing and the number of subsets K for the
SUBSET approach were investigated with a simulated environment. We simulated a stack
of interferometric phase images (50× 50 pixels) with a temporal decorrelation model. The
temporal coherence γtp was computed for both WHOLE and SUBSET. The simulation was
conducted by the following procedure:

1. Noise-free raw phase series are first simulated based on an arbitrary deformation
phase model φsim = −4πdsim/λ. We adopt linear subsidence with a yearly trend
model by dsim = −

(
100

1092

)
t + 10 sin

( 2πt
365
)

in millimeters, where t denotes the number
of days from the initial date.
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2. Spatial coherence is computed based on the temporal decorrelation model with
exponential decay [38],

γdecorr = (1− γ∞)e−
t
τ + γ∞, (7)

where γ∞ accounts for the infinite value of coherence and τ is the time for the co-
herence to drop to 1/e of its initial value. Figure 7 shows examples of the temporal
decorrelation model for several τ values from 4 to 20 with γ∞ = 0.1. Note that
other decorrelation sources that exist in actual data, such as geometric decorrelation,
doppler centroid decorrelation, volume decorrelation, thermal or system noise decor-
relation, and processing-induced decorrelation [46], were omitted from this simulation
for simplicity.
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3. Interferometric phase noises are statistically simulated based on the following proba-
bility density function (pdf) [43],

pd f (∆φ)

=
(1−|γdecorr|2)

L

2π

{
Γ(2L−1)

[Γ(L)]222(L−1)

×
[

(2L−1)β

(1−β2)
L+ 1

2

(
π
2 + arcsinβ

)
+ 1

(1−β2)
L

]
+ 1

2(L−1)

L−2
∑

r=0

Γ(L− 1
2 )

Γ(L− 1
2−r)

Γ(L−1−r)
Γ(L−1)

1+(2r+1)β2

(1−β2)
r+2

}
,

(8)
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with β = |γdecorr| cos(∆φ− ∆φ0) where ∆φ0 is the expected interferometric phase
E{∆φ}, Γ(·) is the gamma function, and L denotes the number of looks. We set ∆φ0
and L as 0 and 25, respectively, in this simulation. Phase noises are generated by
a normalized cumulative sum of the pdf. Finally, generated interferometric phase
noises are added to the noise-free phase generated in step 1.

4. Phase variance σ2
∆φi for each interferogram and pixel is calculated by a 5× 5 moving

spatial window on the interferogram images generated in step 3. Spatial coherence is
then estimated by the relationship γsp = 1/

√
1 + 2Lσ2

∆φi .

5. Raw phase time series are estimated by a WLS solution using the derived phase variances.
Finally, the temporal coherence γtp is computed based on (6). Note that γtp derived
in this simulation was expected to be lower than that in real cases because it does not
account for possible phase unwrapping errors and other decorrelation sources.

In total, 267 interferograms (50× 50 pixels) were simulated. Those were formed by
91 simulated raw phase images using the sequential network with three nearest-neighbor
connections where the observation time of the raw phase series is the same as that of the Frame
3 data. Under this simulation, we performed three types of analysis, as described below.

First, we investigated the γtp dependency on the decorrelation models. We varied τ
from 4 to 20 days with γ∞ = 0.1 and calculated γtp for both SUBSET and WHOLE. SUBSET
with K=3 separated by equal intervals was evaluated in this simulation, that is, data were
separated by year. The generated three subsets are 2018, 2019, and 2020, respectively. The
spatial coherence matrices of WHOLE for τ = 4 and τ = 20 are shown as examples in
Figure 8a,b. Those spatial coherence matrices show higher spatial coherence for higher τ
value. A bar plot of the resulting γtp is shown in Figure 8c. Figure 8c shows an increasing
trend of γtp from 0.6 to 0.92 as τ increases. Figure 8c also reveals similar values for SUBSET
(2018, 2019, and 2020) and WHOLE because we applied the same decorrelation model to
all the periods. Therefore, it is shown that the data separation done in SUBSET does not
alter the γtp under the uniform decorrelation model.
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Increasing the number of subsets K is a reasonable strategy for isolating the decorre-
lated period, and it yields subsets with less decorrelation noise. However, the accuracy of
deformation retrieval is expected to be degraded as the number of SLC images in each sub-
set decreases. Thus, we investigated the relationship between the estimated deformation
accuracy and the number of subsets K as the second analysis. For this analysis, we varied
K from 2 to 10. For SUBSET, the simulated phase series was separated by equal intervals.
In this analysis, the τ of the temporal decorrelation model was also varied. We evaluated
the estimation accuracy using a root mean square error (RMSE), given by

RMSE =

√
1

N − 1 ∑N
j=1

(
φ̂j − φsim

j

)2
, (9)

where φsim
j denotes j-th simulated phase value at simulation step 1. The simulation results

are summarized in Figure 9 for different τ values. Figure 9 shows an increase in RMSE
value as K increases, as well as when τ decreases. In addition, results with lower τ indicate
steeper increases in the RMSE with respect to K.
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Figure 9. RMSE variation with respect to K for different τ values.

The third analysis considered a non-uniform decorrelation model case, simulating the
scatter change within the three-year observation period. For this purpose, we prepared
two decorrelation models: (1) vegetation model with τ = 12 and γ∞ = 0.1 and (2) bare
surface model with τ = 50 and γ∞ = 0.4. The decorrelation model was interchanged when
scatterers were modified. Vegetation loss was simulated by interchanging from vegetation
to bare surface decorrelation models. In this simulation, we tested several decorrelation
model transition timings for a variety of situations by testing five timing cases: (1) 1 July
2018, (2) 1 January 2019, (3) 1 July 2019, (4) 1 January 2020, and (5) 1 July 2020. The
spatial coherence matrices corresponding to each timing are given in Figure 10a–e, showing
distinct patterns of spatial coherence before and after the interchange as the noise level
changes. SUBSET with K = 3 separated by equal intervals was evaluated in this simulation.
The γtp values of both methods are shown in Figure 10f. The obtained γtp reveals different
values for SUBSET and WHOLE, with a maximum difference of 0.2. Based on the result
in Figure 10f, subsets that avoid the vegetation model always give higher γtp than that of
WHOLE. The amount of decorrelation noise in the subset highly depends on the timing of
the scatterer change, meaning that the subset separation timing is considered a key factor
for SUBSET.
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Figure 10. Simulation results of two decorrelation models. (a)–(e) Spatial coherence matrix for each
model transition timing. (a) 1 July 2018. (b) 1 January 2019. (c) 1 July 2019. (d) 1 January 2020.
(e) 1 July 2020. (f) Temporal coherence bar plot for both SUBSET and WHOLE.

From the second and third analyses, it is shown that SUBSET enhances the γtp and
RMSE when the optimal subset timing and lower K are appropriately applied.

4. Results

This section provides deformation velocity results by both the SUBSET and WHOLE
methods. For SUBSET, we adopted a separation of the equal interval with K = 3, and
applied it to the three-year SAR dataset (from January 2018 to January 2021). Therefore,
each subset accounts for data of 2018, 2019, and 2020, and a deformation result was obtained
for each subset. Under this analysis, we compared the deformation result performance
between SUBSET and WHOLE. In addition, a new representation to visualize temporal CS
behavior is demonstrated in this section. Interpretations of the results are given in Section 5.

4.1. Results Comparison of the SUBSET and WHOLE Methods

The deformation time series over the seven Sentinel-1A frames in Kalimantan and
Sumatra were estimated. The obtained vertical deformation velocity images are shown
in Figure 11, where the areas with gray hatched line correspond to the peatland distri-
bution. Only the selected CSs are shown in the velocity images; specifically, pixels with
γtp < 0.65 were masked in our processing. Note that a positive sign of the presented
deformation corresponds to the direction from the target to the SAR sensor.

The estimated deformation velocity results show overall subsidence in peatland areas.
The larger subsidence of 2019 is found in Figure 11, signifying the effect of severe drought
recorded this year due to the positive IOD. Accelerated peat oxidation and peat shrinkage
because of a decrease in GWL are considered to be the main reasons for the larger subsidence
in 2019.
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Figure 11. Vertical deformation velocity images for seven Sentinel-1A frames derived by SUBSET and
WHOLE. (a) SUBSET 2018 result for Frames 1,2, and 3. (b) SUBSET 2019 result for Frames 1,2, and 3.
(c) SUBSET 2020 result for Frames 1,2, and 3. (d) WHOLE result for Frames 1,2, and 3. (e) SUBSET
2018 result for Frame 4. (f) SUBSET 2019 result for Frame 4. (g) SUBSET 2020 result for Frame 4.
(h) WHOLE result for Frame 4. (i) SUBSET 2018 result for Frame 5. (j) SUBSET 2019 result for Frame
5. (k) SUBSET 2020 result for Frame 5. (l) WHOLE result for Frame 5. (m) SUBSET 2018 result for
Frame 6. (n) SUBSET 2019 result for Frame 6. (o) SUBSET 2020 result for Frame 6. (p) WHOLE result
for Frame 6. (q) SUBSET 2018 result for Frame 7. (r) SUBSET 2019 result for Frame 7. (s) SUBSET
2020 result for Frame 7. (t) WHOLE result for Frame 7.
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A number of CSs were used for performance comparison between the SUBSET and the
WHOLE. The comparison result for each frame is shown in Figure 12. Note that SUBSET
uses the number of CSs in the union of three sets of CSs for 2018, 2019, and 2020 (C2018,
C2019, and C2020), that is, C = C2018 ∪ C2019 ∪ C2020. The comparison results in Figure 12
reveal a higher number of CSs for SUBSET than for WHOLE in all frames. In particular,
SUBSET yields more than double the number of CSs for Frames 3, 4, 5, 6, and 7.
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Figure 12. Number of CSs achieved by SUBSET and WHOLE for the seven investigated frames.

4.2. Color Representation

The temporal subset SBAS method can yield a different number of CSs for each subset,
as shown in Figure 11. In particular, the areas indicated by dashed white rectangles in
Figure 11e,o show significant changes in the CS distribution and density among subsets.
The SUBSET approach allows us to characterize this temporal CS behavior. Four classes are
considered in the case of SUBSET with K = 3: (1) CS disappearing (TCS), (2) CS appearing
(TCS), (3) CCS, and (4) other (CS appears or disappears only in the middle of subsets).
Those class types are demonstrated in Figure 13.

Figure 13. Schematic demonstration of class types in color representation. White circles indicate the
existence of CSs.
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To visualize those classes, we assigned red, blue, green, and yellow colors to the
four classes: CS disappearing, CS appearing, CCS, and other, respectively. The resulting
color representation images for seven Sentinel-1A frames are shown in the first column
of Figure 14. The results show that the east parts of Frame 5 (Figure 14g) and Frame 6
(Figure 14j) have blue areas (CS appearing), which might be caused by vegetation clearance
due to massive fires. Moreover, large red areas (CS disappearing) are found in the east
parts of Frame 4 (Figure 14d) and Frame 5 (Figure 14g), and the northeast part of Frame
7 (Figure 14m). We expect that such red areas suffer from a coherence decrease due to
vegetation growth, as we have demonstrated the evolutional coherence decrease over the
oil palm plantation area of Frame 4 in Figure 5b. Further discussion on interpreting the
results in Figure 14 is given in Section 5.Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 24 
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Figure 14. Results of processing and Land cover maps. (a) Color map for Frames 1, 2, and 3.
(b) NDVIdiff for Frames 1, 2, and 3. (c) Land cover map for Frames 1, 2, and 3. (d) Color map for
Frame 4. (e) NDVIdiff for Frame 4. (f) Land cover map for Frame 4. (g) Color map for Frame 5.
(h) NDVIdiff for Frame 5. (i) Land cover map for Frame 5. (j) Color map for Frame 6. (k) NDVIdiff

for Frame 6. (l) Land cover map for Frame 6. (m) Color map for Frame 7. (n) NDVIdiff for Frame 7.
(o) Land cover map for Frame 7.
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5. Discussion

The proposed SUBSET method shows a higher number of CSs than that of the WHOLE
method for all frames, as shown in Figure 12. When high decorrelation noise is involved
during a certain period, subsets that avoid such decorrelations give higher γtp values than
WHOLE according to the third simulation in Section 3.3, resulting in a different number of
CSs between SUBSET and WHOLE. We herein investigate what kind of CSs are selected
by SUBSET but not by WHOLE. For this purpose, two cases of CS are considered: case I,
where CSs are selected by SUBSET and WHOLE, and case II, where CSs are selected only
by SUBSET. We computed the ratio of two cases for each color, as shown in Figure 15. The
result shows that most of the green CCSs are selected by WHOLE. In contrast, red, blue,
and yellow reveal a higher ratio in case II, meaning that most of the TCSs are not selected by
WHOLE. Therefore, the proposed SUBSET method can enhance the CS density in the areas
that show dynamic surface scatterer changes. In particular, significant differences in the
CS distribution are found in the regions marked by white dashed rectangles in Figure 11,
which correspond to vegetation loss and growth revealed in Figure 4.
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We further investigated the causes of the scatterer modification that resulted in TCSs
in SUBSET. Scatterer modification within a tropical region is assumed to be predominantly
caused by vegetation loss or growth. Investigation of NDVI values gives us a straightfor-
ward interpretation of the vegetation condition, namely the amount of vegetation. To check
the vegetation change within the observation period, we computed the NDVI for each year
in the same way demonstrated in Section 2. The differential images of NDVI computed
by NDVIdiff = NDVI2020 − NDVI2018, where NDVI2018 and NDVI2020 represent NDVI
values of 2018 and 2020, respectively, are displayed in the second column of Figure 14.
Note that the positive and negative values account for vegetation growth and decrease,
respectively. The given color maps seem to be related to NDVIdiff. For quantitative analysis,
Figure 16 shows NDVIdiff averaged over the CS corresponding to each color. From the
result, the highest positive NDVIdiff is found in red, revealing that a disappearing CS is
caused by a vegetation increase. In addition, Figure 16 reveals the negative value in blue;
hence, the CS appearance is predominantly caused by a vegetation decrease.
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Figure 16. Average NDVIdiff values over the CSs corresponding to each color.

Fires are considered to be one of the reasons for vegetation loss. To investigate the
fire effect, we computed the number of fire hotspots by the MODIS Collection 6 active
fire/thermal hotspot products for each color and year, as shown in Figure 17. Figure 17
reveals that a significant number of fire hotspots is found in blue pixels, especially for 2019.
According to the results in Figures 16 and 17, peat fire is assumed to be the main cause of
the CSs appearing.
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Figure 17. Total number of fire hotspots summed over the pixels corresponding to each color.

Furthermore, to demonstrate the relationship between given color maps and land cover
classes, we show the 2015 land cover map in the third column of Figure 14. We employed
the land cover map produced by Miettinen et al. based on the semi-automated classification
of MODIS data supported by various auxiliary data sets [47]. In this study, we updated the
oil palm plantation class from Miettinen’s map based on the 2019 oil palm plantation map
in [48]. To demonstrate the relationship, the ratio of eight land cover classes for each color
is shown in Figure 18. Blue shows the highest ratio of “regrowth/plantation,” indicating
that CSs appeared mostly in vegetated areas due to the vegetation clearance and replanting.
The result for the blue also indicates a lower ratio of “lowland open” than that of other
colors, revealing a lower probability of coherence increase in such open areas. In contrast,
the result for red shows the dominance of “lowland open” and “regrowth/plantation” land
covers. In addition, red reveals the highest “palm plantation” ratio with respect to other
colors. Vegetation growth in such land covers leads to a decrease of spatial coherence with
increasing decorrelation noise, resulting in CSs disappearing.
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6. Conclusions

The present work investigated an efficient and simple TInSAR approach that accounts
for dynamic surface scatterer variation caused by vegetation loss and growth based on the
SBAS method. For this, a temporal subset approach was proposed to enhance the number
of CSs, leading to a precise investigation of deformation phenomena that occurred on
tropical peatland. The scheme of the subset approach was evaluated by InSAR simulation.
The simulation investigated the impact of the subset separation timing and the number of
subsets in the proposed approach.

We employed Sentinel-1A C-band SAR data to measure deformation with high tempo-
ral sampling of tropical peatland in Indonesia and applied the proposed approach. This
study adopted the year-based subset strategy for the three-year SAR dataset. Compared
with the conventional approach, the proposed approach yielded an improved CS den-
sity, especially for areas experiencing vegetation loss or growth. Therefore, the proposed
approach gives us a deformation time series that cannot be explored in a conventional
way. The SUBSET approach with Sentinel-1 data thus contributes to revealing a more
detailed progression of surface deformation occurring in tropical peatland, even short-term
deformation (peat oscillation) in response to climatic variations (i.e., changes in GWL). Such
monitoring is valuable for evaluating the peat condition and assessing peat restoration.

The CS distribution obtained from three subsets were used to demonstrate a color
representation that visually illustrates the CS disappearing and appearing behavior. This
distribution was compared with NDVI values and land cover of the study area, revealing a
strong relationship between temporal CS behavior and vegetation dynamics.

The length of the time series is expected to continue increasing, as Sentinel-1 has
continuously provided images for seven years up to now. The number of TCSs is assumed
to increase as the length of the time series increases. Therefore, incorporating the TCS
concept in the TInSAR framework is necessary for all kinds of land surface types in the big
data era of SAR satellite observations. Future plans include the development of an adaptive
solution that efficiently determines the subset timing for the land types in natural areas.
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