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The quality of a supervised classification map depends on the quality of the ground reference data and the
classification method used. However, training samples for agriculture landscapes are often mixed with
noise. Therefore, the classification of agriculture regions using remotely sensed data requires the use
of classification methods with good generalization capabilities. In this study, the performance of the sub-
space method in land cover classification of a complex cropping mix area is explored. Landsat-5 thematic
mapper (TM) data were used to classify 12 different land cover classes in the study area, located between
Tianjin and Tangshan cities in northern China. We compared the classification maps obtained using the
subspace method with those obtained using the self-organizing map neural network (SOM) and maxi-
mum likelihood classification (MLC) methods. The results of this comparative study confirm that the sub-
space method performed better than both the SOM and MLC methods. Furthermore, a comparison of the
sensitivity of these methods to the reduction in the training sample size shows that the subspace method
has a lower sensitivity to variations in the number of training pixels used than the other two methods.
Our results demonstrate the ability of the subspace method to distinguish between different crop types
over a large area. Moreover, the subspace method is less sensitive to small training sample sizes than the
other two methods.
� 2017 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

Rapid population growth coupled with economic growth and
urbanization has led to an increased demand for food and water
supply in China. The rapid rate of urbanization in China has been
at the expense of green space. Most of the urban expansion took
place in areas that were suitable for urban land use, and these were
mostly agricultural areas (Bagan and Yamagata, 2014). Accurate
crop type mapping is required to manage the increasing pressure
to feed the growing population despite the scarcity of water
resources (Qi et al., 2012; Salmon et al., 2015).

Earth observation satellite data such as Landsat data allow the
extraction of more detailed information on specific conditions in
an area so as to identify major crop types. Remote sensing image
classification is an important technique in image processing and
can extract useful information, by identifying the spectral signa-
tures of land cover types, for natural resources management. Var-
ious remote sensing image classification methods have been used
for cropland mapping. These include the commonly used maxi-
mum likelihood classifiers (MLCs) (EL-Magd et al., 2003), neural
networks (Bagan et al., 2005), support vector machines (SVM)
(Mathur and Foody, 2008; Zheng et al., 2015), and knowledge-
based systems, such as random forest classifiers (Rodriguez-
Galiano et al., 2012) and decision tree classifiers (Liu et al., 2016).
Recently, some progress has been made in land cover classification
techniques such as the convolutional neural network model
(Maggiori et al., 2017) and subspace classification method (Bagan
and Yamagata, 2010; Qian et al., 2014; Sun et al., 2017a,b).
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The subspace method provides new opportunities for the effi-
cient classification of remotely sensed data. This method is non-
parametric or at most, semiparametric. It involves no
probabilistic assumptions and is based entirely on the measure-
ments of the feature space. In pattern recognition, the subspace
method has been widely used for face and speech recognition
(Hayashi, 2014). The subspace method classifies patterns as ele-
ments of a vector space, that is, each class is represented by a sub-
space spanned by a group of basis vectors, which can be obtained
by principal component analysis (PCA).

Although the subspace method is a promising tool for land
cover classification, there are two major limitations of this method
that may discourage widespread adoption. First, previous studies
have not investigated the effect of variations in the training sample
size on the classifier performance of the subspace method. Second,
the applicability of the subspace method in cropland mapping has
not been fully established.

Ground reference data play a fundamental role in supervised
image classification methods (Foody et al., 2016). The size and
quality of the training sample used in a supervised classification
method can have an impact on the accuracy of the resulting classi-
fication map (Ekambaram et al., 2016). As is often the case with
remote sensing mapping activities, supervised classification meth-
ods also require a rather large amount of field reference data to
ensure successful training of the supervised classifier. The collec-
tion of such an extensive and reliable ground reference data set
is not feasible from an operational perspective due to time and cost
constraints. Although many classification methods have been pro-
posed, the statistical evaluation of the effect of reduced training
sample sizes on the performance of their classifiers has not been
carried out. Therefore, it is necessary to investigate the perfor-
mance of supervised classification methods by using different
training sample sizes. We have used the subspace method for the
classification of a site with high crop diversity, located between
the cities of Tianjin and Tangshan in the North China Plain, to test
and demonstrate the full scope and capability of the subspace
method and to overcome the two limitations mentioned earlier.

The purpose of this study is to investigate, implement, and test
the subspace method for the classification of major crop types
using Landsat-5 thematic mapper (TM) imagery. We also investi-
gated the effect of reduced training sample size on classification
performance. Furthermore, we compared the effectiveness of the
subspace method in the classification of major crop types to that
of the two other machine learning algorithms, that is, the self-
organizing map neural network (SOM), which is being increasingly
used for land cover mapping, and MLC, which is commonly used
for land cover mapping.
Fig. 1. Map of the study area located between Tianjin and Tangshan cities, North China
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2. Methodology

2.1. Study area

The study area is located between the cities of Tianjin and Tang-
shan in the North China Plain, and covers an area of about 3000
km2 (Fig. 1). It is an area with a complex cropping mix, character-
ized by a flat topography and numerous rivers and ponds. It has an
average altitude of 3 m above sea level. Farmland accounts for
about 60% of the total land area. Staple crops in this region are
wheat and maize. Winter wheat usually occupies the fields from
the beginning of October to June, and maize is grown from mid-
June to September. The other vegetation includes cotton, rice, veg-
etables, soybean, trees, and wetland plant species.

A large portion of China’s food comes from the North China
Plain. The agricultural sector is experiencing water scarcity, and
thus this agriculturally important region suffers from frequent
droughts (Lohmar et al., 2003). Therefore, precise cropland map-
ping of this region will have a significant impact on water use man-
agement, economic growth, and the livelihood of the region’s
population.

2.2. Data description

Landsat-5 TM images (provided by the USGS) acquired on
September 4, 2005 (path 122 row 33) were used for land cover
classification, since earlier studies reported that September was
the optimal period for spectral separation between the main crops
cultivated in this area (Bagan et al., 2005). Landsat-5 TM has 7
spectral bands with a radiometric resolution of 8 bit; 6 of these
spectral bands have a spatial resolution of 30 m and the remaining
has a spatial resolution of 120 m (thermal band). In this study, an
image subset consisting of 1936 pixels � 1614 pixels was extracted
from the TM imagery for analysis (Fig. 1). TM band 6 (thermal
band) was included for its potential to assist in vegetation classifi-
cation, and thus, band 6 is resampled to a spatial resolution of 30
m. Landsat scenes provided by the USGS have already been terrain
corrected using ground control points and a digital elevation model
(USGS, 2016). Atmospheric correction was considered unnecessary
since it is often equivalent to subtracting a constant from all the
pixels in each spectral band for a single date TM image and has lit-
tle effect on the classification accuracy.

In order to gain a thorough understanding of the ground truth
situation, two field surveys were conducted in the fall of 2005.
The first field survey was conducted on August 7, 2005 by using
a vehicle video image system, which was equipped with a digital
camcorder, a GPS receiver with a horizontal accuracy of 10 m,
(left) and the Landsat TM image (RGB = bands 4, 3, and 2) used in the study (right).
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and a laptop. Land cover information was transferred from the dig-
ital camcorder and the GPS receiver to the laptop. The vehicle trav-
elled 40 km along the main cropland, capturing 600 video frames
of land cover with GPS coordinates. In addition, during the field
surveys, photos were taken for different types of land cover along
with GPS coordinates. In September 2005, another field survey was
carried out to identify different crop types through on-site compar-
ison of the ground truth of land cover with the recorded video
images. These video frames were then used for manual digitization
of the Landsat TM image to polygons in the laboratory.
2.3. Ground reference data collection

The main land cover classes in the study area are rice, summer
maize, spring maize, cotton, soybean, vegetable land, harvested
land, tree, reed, water body, residential, and other urban or built-
up.

Ground reference sites for each mapping class and Landsat
recording date were selected to accurately portray the spectral
complexity and variability within each class. All the initially digi-
tized ground reference sites were compared with the correspond-
ing Landsat images to provide the correct interpretation of the
time and date of image creation. As described above, ancillary
images and GPS data sets were also used to support image inter-
pretation and provide as much information as possible to help
locate the ground reference sites. This ensured that all the selected
samples could accurately represent a certain land cover class
(Congalton and Green, 2009; Gómez et al., 2016). The selected ref-
erence sites were either polygonal or linear, and their locations
were recorded using the ITT ENVI software package. The reference
sites were then randomly divided into training and testing samples
to ensure that they were spatially disjoint and to reduce any poten-
tial for correlation between the training data and test data. In total,
4533 training samples (pixels) and 1936 test samples were
selected. The distribution of these samples in different land cover
classes is given in Table 1.
2.4. Subspace classification methods

Subspace classification methods have been widely used to solve
classification problems. The class-featuring information compres-
sion (CLAFIC) method and the multiple similarity method are
classical subspace classification methods (Oja, 1983). These meth-
ods have been extended in various ways, such as the orthogonal
subspace, mutual subspace, and kernel subspace methods
(Washizawa, 2016). In the CLAFIC method, each class forms a lower
dimensional subspace that is distinct from the subspace spanned
Table 1
Distribution of training and test samples in the different land cover classes of the
study area.

Land cover class Training samples Testing samples

1. Tree 321 164
2. Reed 530 167
3. Rice 224 160
4. Summer maize 1060 214
5. Spring maize 442 177
6. Cotton 604 165
7. Soybean 174 135
8. Vegetable land 416 161
9. Harvested land 179 149
10. Residential 185 145
11. Other urban or built-up 146 120
12. Water body 252 179
Total 4533 1936
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by the other classes. The CLAFIC method and its classification crite-
ria are as follows.

The orthonormal basis vectors of subspace Ui, which corre-
sponds to land cover class xiði ¼ 1;2; � � � ; cÞ, are denoted by
ui
1;u

i
2; � � � ;ui

pi , where pi is the dimensionality of the subspace. Any

pixel x can be represented as a sum of two vectors, one belonging
to the subspace Ui and the other orthogonal to it.

x ¼ x̂i þ ~xi; ð1Þ
where x̂i is the projection of pixel x on subspace Ui and ~xi is the vec-
tor orthogonal to subspace Ui. The orthogonal projection matrix on
the subspace Ui can be computed from

Pi ¼
Xpi

j¼1
ui
ju

iT
j ð2Þ

here uiT
j is the transpose of basis vector ui

j and Pi is a square sym-
metric matrix. The projection norm between pixel x and the sub-
space Ui can be measured from

kx̂k2 ¼ kPixk2 ¼ xTPix ¼
Xpi

j¼1
ðxTui

jÞ
2 ð3Þ

The classification rule is if

gðx;UiÞ ¼ argmax
i¼1;2;���;c

kPixk2 ¼ argmax
i¼1;2;���;c

Xpi

j¼1
ðxTui

jÞ
2
; ð4Þ

then x is classified into class xi.
One drawback of the CLAFIC method is that subspaces obtained

for one class are not dependent on the subspaces obtained for the
other classes. Therefore, subspaces obtained by the CLAFIC method
may cause subspace overlay problems, which decrease the recog-
nition rate. To avoid this drawback, the averaged learning subspace
method (ALSM) was proposed for a more efficient separation of
subspaces.

In the ALSM, CLAFIC is used to obtain the initial subspace and
the subspace is rotated at each training iteration. To find the mis-
classified samples from the training sets, the following sets are
calculated:

Ei ¼ x ðx 2 xiÞ \ ðbut x is classified to other classÞjf g ð5Þ

Si ¼ x ðx R xiÞ \ ðbut x is classified to class xiÞjf g ð6Þ
Thus, the updated subspace for each class is obtained from the

modified correlation matrix

Ui  Ui þ a
X

x2Ei
xxT � b

X

x2Si
xxT ; ð7Þ

where the parameters a and b control the strength of the sets Ei and
Si, respectively. After the subspaces are updated, the sets Ei and Si
are updated again. Finally, the optimal subspaces for each class
are obtained.

3. Results and discussion

3.1. Classification results

The proposed subspace method for multispectral classification
was implemented using C++ programming language. The subspace
dimensions were fixed at 3 and kept constant during the learning
and classification process for each subspace (class) in the subspace
method. The optimal values of the parameters a and b in Eq. (7)
were fixed at 0.08, which was determined by an automatic opti-
mization system (Bagan and Yamagata, 2010). After the parameter
ace Sci. (2018), https://doi.org/10.1016/j.ejrs.2017.12.003
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selection, the ALSM automatically determines the optimized sub-
spaces for each class during the training phase. The constructed
ALSM classifier was then applied to the multispectral TM data.

During the training stage of the subspace method, the classifica-
tion accuracies for the training and testing data sets were deter-
mined by calculating the misclassification rate (error rate) under
the respective iterations (Fig. 2). As shown in Fig. 2, the classifica-
tion error rate for both the training and testing data sets decreased
almost steadily with each learning iteration. For the training data
set, it decreased from 14.8% to 4.1%, and for the testing data set,
it decreased from 8.9% to 6.5%.

To compare the efficiency of the subspace classification method
with that of the other methods, we classified the Landsat-5 TM
images with 7 spectral bands (obtained on September 4, 2005)
using the SOM and MLC methods with the same training and test
data set. The parameters of the SOM neural network were set as
follows: number of nodes in the input layer was set at 7; the com-
petitive layer was a 20 � 20 two-dimensional set of neurons; the
parameters of the neural network were set (based on testing) at
a maximum iteration of 3000, an initial learning rate of 0.9, and
a descending learning rate of 0.005. Learning vector quantization
(LVQ) was applied to fine-tune the SOM weight vectors. The
parameters of LVQ were set as follows: a maximum iteration of
1000, an initial learning rate of 0.0025, and a descending learning
Fig. 3. (a) TM image subset (RGB = bands 4, 5, and 3) and classification maps genera
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Fig. 2. Changes in the misclassification rate for the training and test samples of the
subspace method with each training iteration.
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rate of 0.00001. After the training process was completed, land
cover classification was performed using the SOM classifier. Details
of the SOM classifier can be found in Bagan et al. (2008).

The classification maps obtained using the MLC, SOM, and sub-
space methods are shown in Fig. 3(b)–(d). The accuracies of these
classification maps were evaluated with the same test samples
(Table 1).

The classification accuracy was assessed with the confusion
matrix approach. Additionally, other indicators of classification
accuracy, such as producer’s accuracy, user’s accuracies, overall
classification accuracy, and kappa coefficient, were calculated.

The confusion matrix for the MLC, SOM, and subspace method is
shown in Table 2–4, respectively. The classification accuracy of the
subspace, SOM, and MLC method was 93.5%, 92.6%, and 91.7%,
respectively. The subspace and SOM methods showed better effi-
ciency than the MLC method. Kappa analysis was also performed;
the kappa coefficient of the subspace, SOM, and MLC method is
0.93, 0.92, and 0.91, respectively. The subspace method had the
best agreement between the classification map and the reference
data. The subspace method showed good producer’s and user’s
classification accuracies (Table 4) for almost all the land cover
classes. The SOM andMLCmethods, on the other hand, did not per-
form well in this regard and the accuracies were not consistent for
the different land cover classes. For instance, the MLC method
yielded high producer’s accuracies for the reed, rice, summer
maize, and cotton land cover classes, however, the user’s accura-
cies were low for most of the land cover classes. Similarly, incon-
sistencies in the accuracies of the SOM method were observed,
for instance in the classification of the tree and reed land cover
classes (see Table 3). All the three methods showed high producer’s
accuracies for the rice, summer maize, and residential land cover
classes. The user’s accuracies of all the image classification meth-
ods were consistently high for the tree, harvested land, water body,
and other urban built-up land cover classes.

Misclassification and spectral confusion of different land covers
were considered to be caused by spectral similarities of different
land covers. Therefore, there is high percentage of mixed pixels in
the image data, for instance summermaize are oftenmixed upwith
trees in the so called agro-forestry system, and reed usually grows
along the boundary of crop lands. A mixture of different vegetation
ted by (b) the MLC method, (c) the SOM method, and (d) the subspace method.

ace Sci. (2018), https://doi.org/10.1016/j.ejrs.2017.12.003
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Table 2
Confusion matrix for the MLC method.

Class 1 2 3 4 5 6 7 8 9 10 11 12 Total UA (%)

1 111 0 0 0 0 0 0 0 0 0 0 0 111 100
2 0 165 0 0 28 0 0 2 1 0 0 3 199 82.9
3 2 0 160 0 0 0 0 0 0 0 0 18 180 88.9
4 51 0 0 214 0 0 0 0 0 0 0 0 265 80.8
5 0 0 0 0 139 0 0 0 1 0 0 0 140 99.3
6 0 0 0 0 0 164 26 0 0 0 0 0 190 86.3
7 0 0 0 0 0 1 109 0 0 0 0 0 110 99.1
8 0 2 0 0 10 0 0 159 4 0 0 0 175 90.9
9 0 0 0 0 0 0 0 0 140 0 0 0 140 100
10 0 0 0 0 0 0 0 0 3 145 8 0 156 93.0
11 0 0 0 0 0 0 0 0 0 0 112 0 112 100
12 0 0 0 0 0 0 0 0 0 0 0 158 158 100
Total 164 167 160 214 177 165 135 161 149 145 120 179 1936
PA (%) 67.7 98.8 100 100 78.5 99.4 80.7 98.8 94.0 100 93.3 88.3

Overall classification accuracy: 91.74%; Kappa coefficient: 0.9096; UA = user’s accuracy; PA = producer’s accuracy.

Table 3
Confusion matrix for the SOM method.

Class 1 2 3 4 5 6 7 8 9 10 11 12 Total UA (%)

1 147 0 0 0 0 0 0 1 0 0 0 0 148 99.3
2 0 152 0 0 26 0 0 12 2 0 0 0 192 79.2
3 4 0 144 0 0 0 0 0 0 0 0 0 148 97.3
4 13 0 16 214 0 0 0 0 0 0 0 0 243 88.1
5 0 15 0 0 150 0 0 13 0 0 0 0 178 84.3
6 0 0 0 0 0 150 14 0 0 0 0 0 164 91.5
7 0 0 0 0 0 15 121 0 0 0 0 0 136 89.0
8 0 0 0 0 1 0 0 134 0 0 1 0 136 98.5
9 0 0 0 0 0 0 0 1 139 0 0 0 140 99.3
10 0 0 0 0 0 0 0 0 8 145 2 0 155 93.6
11 0 0 0 0 0 0 0 0 0 0 117 0 117 100
12 0 0 0 0 0 0 0 0 0 0 0 179 179 100
Total 164 167 160 214 177 165 135 161 149 145 120 179 1936
PA (%) 89.6 91.0 90 100 84.8 90.9 89.6 83.2 93.3 100 97.5 100

Overall classification accuracy: 92.56%; Kappa coefficient: 0.9187; UA = user’s accuracy; PA = producer’s accuracy.

Table 4
Confusion matrix for the subspace method.

Class 1 2 3 4 5 6 7 8 9 10 11 12 Total UA (%)

1 152 0 0 6 0 0 0 0 0 0 0 0 158 96.2
2 0 155 0 0 11 0 0 4 0 0 0 0 170 91.2
3 0 0 160 0 0 0 0 0 0 0 0 0 160 100
4 12 0 0 206 0 0 0 0 0 0 0 0 218 94.5
5 0 9 0 0 160 0 0 7 0 0 0 0 176 90.9
6 0 0 0 2 0 138 20 0 0 0 0 0 160 86.3
7 0 0 0 0 0 27 115 0 0 0 0 0 142 81.0
8 0 2 0 0 6 0 0 146 3 0 2 0 159 91.8
9 0 1 0 0 0 0 0 4 141 0 0 0 146 96.6
10 0 0 0 0 0 0 0 0 5 144 3 0 152 94.7
11 0 0 0 0 0 0 0 0 0 1 115 0 116 99.1
12 0 0 0 0 0 0 0 0 0 0 0 179 179 100
Total 164 167 160 214 177 165 135 161 149 145 120 179 1936
PA (%) 92.7 92.8 100 96.3 90.4 83.6 85.2 90.7 94.6 99.3 95.8 100

Overall classification accuracy: 93.54%; Kappa coefficient: 0.9294; UA = user’s accuracy; PA = producer’s accuracy.
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causes difficulties in land cover classification. Fig. 4 shows the vari-
ation in themean spectral values of different land covers at different
Landsat TM spectral bands derived from the training samples. Spec-
tral similarities are obvious between the tree and summer maize
land cover classes and the cotton and soybean land cover classes.

3.2. Evaluation of the effect of reduced training set on classification
accuracy

Supervised classification methods require a rather large amount
of field reference data in order to ensure successful training of the
Please cite this article in press as: Bagan, H., et al.. Egypt. J. Remote Sensing Sp
supervised classifier. The size of the training data used in a super-
vised classification method can influence the accuracy of the
resulting classification map. Thus, a statistical evaluation of the
impact of training sample size reduction on the performance of
the classification method is necessary.

Reduced training data sets, ranging from 10% to 90% (in a 10%
interval) of the original training sample size, were derived to evalu-
ate the sensitivity of the three classificationmethods to variations in
the number of training pixels (Table 5). Each of training setwas gen-
erated using a proportionate stratified random sampling method.
The same original testing set was applied for the evaluation of the
ace Sci. (2018), https://doi.org/10.1016/j.ejrs.2017.12.003
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Fig. 4. Mean spectral values (DN: digital number) of different land cover classes in the study area.

Table 5
Classification accuracies of the MLC, SOM, and subspace methods with different training sample sizes.

Classifiers Percentage of training set size (%)

10 20 30 40 50 60 70 80 90 100

MLC Overall accuracy (%) 80.48 88.48 90.24 91.43 90.70 91.94 91.27 91.48 92.36 91.74
SOM Overall accuracy (%) 90.08 91.74 91.22 91.12 91.43 91.53 90.91 91.94 91.79 92.56
subspace Overall accuracy (%) 90.96 90.39 90.29 91.58 91.12 92.20 92.56 92.30 92.98 93.54
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three classifiers. Comparison of the classification accuracies of the
different classifiers using different sample sets is shown in Table 5.

For all the three classification methods, it was obvious that clas-
sification accuracy is positively related to training set size. For the
MLC method, the difference between the classification accuracy
achieved with the largest and smallest training sample size was
11.3%. Classification accuracies of the subspace and SOM method
seemed to be less sensitive to reduction in training set size. For
the subspace and SOM method, the difference between the classi-
fication accuracy achieved using the largest and smallest training
sample size were only 3.3% and 2.5%, respectively. This may be
because the MLC method is based on the assumption of normal
or near normal spectral distribution for each class of interest. An
equal prior probability among the classes is also assumed
(Lillesand et al., 2008).

Fig. 5 shows the variation in the classification accuracies of the
three classifiers with different training sample sizes. The MLC
method needs a training data size that is at least 30% of the original
training sample size to reach a relatively stable accuracy. However,
the subspace and SOM method need a training sample size that is
about 10% of the original training sample size to achieve stable
classification accuracies. The results of our study highlight the
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Fig. 5. Relationship between classification accuracy and the percentage reduction
in the training sample size.
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advantages of the subspace method equal to or over the other clas-
sification methods, that is, it requires a relatively small training
sample size for precise cropland mapping.

4. Conclusions

In this study, we used the subspace method for the identifica-
tion of major crop types in an agricultural area of the North China
Plain using multispectral remotely sensed data. The classification
results of the Landsat TM data demonstrated that the subspace
method was more effective than the SOM and MLC methods in
terms of overall and individual crop classification accuracies. The
advantages of the subspace method over the SOM and MLC meth-
ods include the need for fewer parameters and lower sensitivity to
the reduction in the training sample size. Therefore, the proposed
subspace method seems to be a promising alternative to the
SOM method for crop type classification. It is worth mentioning
that the performance of the subspace method is less dependent
on the dimensionality of the input space unlike the MLC and
SOM methods. Thus, the subspace method has a high potential
for the classification of other types of remotely sensed data and
time-series remotely sensed data. Although the performance of
the subspace method in the present study was good, further
research is required. This especially includes analyzing the influ-
ence of the parameters of the subspace method on its classification
accuracy, and testing the capability of the subspace method in land
cover classification of regions with entirely different crop types
using other multispectral images.
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