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Abstract: Spatial urban growth and its impact on land surface temperature (LST) is a high priority
environmental issue for urban policy. Although the impact of horizontal spatial growth of cities on LST
is well studied, the impact of the vertical spatial distribution of buildings on LST is under-investigated.
This is particularly true for cities in sub-tropical developing countries. In this study, TerraSAR-X add-on
for Digital Elevation Measurement (TanDEM-XDEM), Advanced Spaceborne Thermal Emission and
Reflection (ASTER)-Global Digital Elevation Model (GDEM), and ALOS World 3D-30m (AW3D30)
based Digital Surface Model (DSM) data were used to investigate the vertical growth of the Dhaka
Metropolitan Area (DMA) in Bangladesh. Thermal Infrared (TIR) data (10.6-11.2µm) of Landsat-8
were used to investigate the seasonal variations in LST. Thereafter, the impact of horizontal and vertical
spatial growth on LST was studied. The result showed that: (a) TanDEM-X DSM derived building
height had a higher accuracy as compared to other existing DSM that reveals mean building height of
the Dhaka city is approximately 10 m, (b) built-up areas were estimated to cover approximately 94%,
88%, and 44% in Dhaka South City Corporation (DSCC), Dhaka North City Corporation (DNCC),
and Fringe areas, respectively, of DMA using a Support Vector Machine (SVM) classification method,
(c) the built-up showed a strong relationship with LST (Kendall tau coefficient of 0.625 in summer
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and 0.483 in winter) in comparison to vertical growth (Kendall tau coefficient of 0.156 in the summer
and 0.059 in the winter), and (d) the ‘low height-high density’ areas showed high LST in both seasons.
This study suggests that vertical development is better than horizontal development for providing
enough open spaces, green spaces, and preserving natural features. This study provides city planners
with a better understating of sustainable urban planning and can promote the formulation of action
plans for appropriate urban development policies.

Keywords: spatial growth; LST; TanDEM-X -DSM; building height; urban planning

1. Introduction

Unplanned spatial growth of cities is a major cause of increasing land surface temperatures (LST)
and the development of urban heat islands (UHI) [1]. Wong and Yu [2] reported that the highest
concentration of hard surfaces such as buildings, roads, impervious areas, and fewer open spaces are
the reasons for increasing urban surface temperature. Apart from that, the important causes of the
urban heat island effect include canyon geometry, thermal properties of materials, anthropogenic heat,
the urban greenhouse effect, and evaporation [3–5]. Spatial growth denotes a tremendous increase
in population and buildings in cities, which leads to the drastic reduction of vegetated areas while
also leading to an increase of impervious areas [6]. According to Cuberers D. [7], the spatial growth
of a city refers to both horizontal (the addition of new settlement areas from the core city center
to peripheral areas with a modest vertical profile) and vertical (high population density, economic
agglomeration, and high building floor-area ratios) urban expansion. The physical growth of cities
brings numerous environmental problems, among them being the “urban heat island” effect, which is
a well-documented climatological effect of human activities on the urban environment [2,8].

Recently, remotely sensed data such as ASTER, AW3D, TanDEM-X, and Shuttle Radar Topography
Mission (SRTM) have emerged in urban studies due to the requirements of quick and extensive spatial
information on urban growth. Moreover, remote sensing datasets, for example, the Landsat, Moderate
Resolution Imaging Spectroradiometer (MODIS), and ASTER emissivity dataset, are widely used
for land surface temperature studies and for taking decisions for the well-being of city dwellers.
Remote sensing techniques provide data over large areas along with updated spatial information in a
cost-effective way. This makes it easy to study the complex relationship between spatial parameters
and thermal conditions [5,9–11]. Remotely sensed data have been widely used in the field of urban
planning especially for decision-making and monitoring environmental parameters. For example,
vegetation, land surface temperature (LST), built-up area indices, land use/land cover, urban expansion,
and hazard mapping have been well documented by many studies [12–15]. Remotely sensed data
can also be used for highly accurate 3D surface model extraction in urban areas [16–18]. Misra et al.,
2018 [19], used multi-directional processing and slope-dependent filtering approaches to extract digital
building heights using Digital Surface Model (DSM) data. They have determined the methodology for
DSM-based building height extraction that can be further utilized to study vertical growth and urban
compactness, while observing heat islands, flood hazard zonation, monitoring city growth, and thermal
energy absorption. A literature review shows that dense areas have fewer open spaces and more
built-up areas, and experience a high surface temperature [20–22]. Moreover, solar radiation trapped
with multiple reflections of radiation within the 3D geometry increases the urban temperature [23–25].
Land surface temperature is higher in the core urban areas than in the rural areas [26–29]. Another
study revealed that the encroachment of wetlands leads to increased surface temperature in the
surrounding areas of Kerala, India [30].

Most of the previous studies in urban science focused on the application of remote sensing
techniques to monitor change in vegetation cover and impacts on land surface temperature (LST),
3D modeling for vertical growth assessment, urban area expansion, and impacts on land surface
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temperatures [19,31–34]. In addition, a study of the suburbs Colorado, USA, explored the characteristics
of LST on landscape patterns and vertical structures employing Light Detection and Ranging
(LiDAR) data [35]. However, there is no inclusive study that considers LST, building height,
and built-up density using cost-effective remote sensing data considering the affordability of developing
countries [19,26,35–39]. The use of LiDAR data or laser scanning can provide accurate information
about building heights, but it is expensive and not affordable for developing countries. The study
presented in this paper is required for the quick and proficient implementation of urban planning
policies, especially for rapidly growing cities in developing countries. There is a considerable research
gap to integrate two dimensional (2D) and three dimensional (3D) spatial growth and its impacts on
LST in the Dhaka Metropolitan Area (DMA) with a focus on urban planning.

In light of the above-mentioned research gap, this study investigates the application of remote
sensing in monitoring the impact of urban heat and spatial growth. First, this study offers a glimpse of
the current scenario of the spatial growth of DMA, which highlights the building height estimation
approach using space-borne sensor data from TanDEM-X, ASTER-GDEM, and AW3D30. Second,
this study explores the seasonal variation of LST using Landsat 8 data. Lastly, it emphasizes the
relationship between building height, built-up density, and LST, which will form the basis of future
guidelines for urban planning and policy implications to create a better living environment.

2. Study Area

Dhaka, which is the capital city of Bangladesh, is one of the largest and most populated cities in the
world with a population of 18.89 million people in Greater Dhaka City [40]. To meet the demands of the
huge population, the city is growing rapidly both vertically and horizontally. As explained previously
in the literature, this spatial growth has adverse impacts on LST as well as microclimatic changes in
the city area. Figure 1 depicts the location of the study area, i.e., Dhaka Metropolitan Area (DMA).
The DMA lies between 23◦41′46.22′′N to 23◦53′6.3′′N latitude and 90◦24′9.34′′E to 90◦24′6.17′′E
longitude. The DMA includes two City Corporations, namely Dhaka South City Corporation (DSCC
with 57 wards) and Dhaka North City Corporation (DNCC with 36 wards) along with the fringe area
with 17 unions. DSCC and DNCC are characterized by congested buildings with less open areas.
The fringe area is developed by transforming agriculture land to bare land and development of the
built-up area. Figure 2 demonstrates the photographs captured in different zones of DMA. Restricted
areas such as Dhaka Cantonment and airport area were excluded from this research. The urbanization
rate of DMA is about 4.3%, which leads to encroachment of urban green spaces and wetlands [19].
The climate of Bangladesh is subtropical in the center-north and tropical in the south with a pleasantly
warm and sunny winter from November to February. There are four distinct seasons that can be
observed in Bangladesh from the climatic point of view: (1) the dry winter season from December to
February, (2) the pre-monsoon hot summer season from March to May, (3) the rainy monsoon season
from June to September, and (4) the post-monsoon autumn season from October to November [41].
Figure 3 illustrates the monthly average rainfall and temperature pattern of Dhaka city from 2005–2015.
The annual average temperature is about 25 ◦C (77 ◦F) and the average annual rainfall is about
1300 mm [42]. About 44% area of DMA consists of higher temperature zones (27 ◦C to <30 ◦C) and is
increasing by 0.32 ◦C per decade [39].
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Figure 1. Location of Dhaka Metropolitan Area (DMA) with the distribution of the North City
Corporation, South City Corporation, and Fringe areas. Sources: Bangladesh Bureau of Statistics (BBS),
2011, and Capital Development Authority (RAJUK), Dhaka, 2018.
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Figure 2. (a) Highly dense built-up area and informal settlement in the Dhaka South City Corporation
(DSCC), (b) relatively less congested buildings and formal settlement in the Dhaka North City
Corporation (DNCC), (c) built-up area with vegetation in the fringe area, and (d) sand filling for land
development in the fringe area.
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Figure 3. Monthly average temperature and rainfall of Dhaka city (2005 to 2015). Data source:
Bangladesh Meteorological Department (2015).

Raja [43] reported that the main causes of urban heat island and microclimatic variations in Dhaka
city are dwindling green covers, open spaces, and wetlands along with changes in urban morphology,
which increases anthropogenic heat generation, building density, impervious surfaces, and dark-colored
rooftops. Ferdous [16] revealed that the uncontrolled urban growth in the DMA leads to an increase in
LST because of a decrease in open spaces and water bodies. The objective of this study is to provide
policymakers information related to several measures of urban growth and their impact on LST and
the microclimate of DMA.

3. Materials and Methods

3.1. Data Sets

Several satellites and ground-based datasets related to LST, build-up, and 3D surface elevation
were collected and analyzed in this study. Table 1 represents the summary of various DEMs data and
their specification used in this study. DEMs data were useful for extracting building height information.
Table 2 illustrates the acquisition of Landsat-8 data and their properties in the study area.

Table 1. Summary of DSMs used in this research. TanDEM-X: (TerraSAR-X Add-On for Digital
Elevation Measurements), ASTER GDEM: (Advanced Spaceborne Thermal Emission and Reflection
Radiometer), AW3D: (ALOS WORLD 3D).

Data Acquisition Vertical
Accuracy *

Imaging
System Resolution (m) Sources

TanDEM-X 16 October 2012 1.6–6.2 m SAR X band 12
German

Aerospace
Center, DLR

ASTER (GDEM
V2), publicly
released 2011

2009 15.1–23.2 m Optical 30 US Geological
Survey (USGS),

AW3D30
Publicly

released by
JAXA in 2015

2006-2011 1.7–6.8 m Optical 30

Japan
Aerospace

Exploration
Agency (JAXA)

* Vertical accuracy of the Digital Surface Model (DSM) reported by other studies.
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Table 2. Summary of Landsat-8 Operational Land Imager (OLI) used in this research.

Path/Tiles Acquisition
Date

Local
Acquisition
Time (am)

Band Source Remarks

Landsat-8 OLI
WRS-2, 137/44

06-11-13 10:26:34.15

Band (3,4,5,6)
30m and TIR
band (10,11)

100m

US Geological
Survey (USGS),

TIR band for
LST retrieval

and other
bands for Land
Use Land Cover
(LULC) mapping

24-12-13 10:26:16.33
25-01-14 10:25:56.73
06-02-14 10:25:31.49
14-03-14 10:25:20.51
24-04-14 10:25:51.49
06-05-14 10:26:01.49

3.1.1. TanDEM-X

The TanDEM-X system is a space-borne radar satellite system developed by the German Aerospace
Center (DLR) (https://tandemx-science.dlr.de/). It is based on two TerraSAR-X radar satellites flying
in close formation and equipped with a synthetic aperture radar operating at X-band to generate
World DEM [44]. The carrier frequency of the X-band radar is 9.6 GHz (3.1 cm in wavelength) with
horizontal-horizontal (HH) polarization at 35.33 degrees of the incidence angle. The range and azimuth
pixel spacing are approximately 0.91 m and 1.90 m, respectively [45]. Due to the bi-static mode of data
collection, both satellite orbits can acquire data at the same location and at almost the same time with a
short baseline [46]. Wessel et al. [47] reported the absolute vertical mean error and Root Mean Square
Error (RMSE) of TanDEM-X DEM was less than ±0.20 m, and 1.4 m, respectively, with an excellent
absolute 90% linear height error below 2 m. Another study showed that the absolute height error was
±1.61 m and the relative height error was 1.05 m for TanDEM-X [48].

3.1.2. ASTER GDEM V2

The ASTER is a Japanese sensor onboard on NASA’s Terra platform launched into earth orbit in 1999.
The instrument provides high-resolution images of the earth in stereo-pairs with the nadir and off-nadir
look angles. These stereo-pairs produce digital elevation models globally [49,50]. The improved GDEM
V2 adds 260,000 additional stereo-pairs, which improves coverage and reduces the occurrence of
artifacts (https://ssl.jspacesystems.or.jp/ersdac/GDEM/E/). The refined production algorithm provides
improved spatial resolution, increased horizontal and vertical accuracy, and increased superior water
body coverage and detection [51]. The ASTER GDEM V2 maintains the GeoTIFF format and the
same gridding and tile structure as V1, with 30-meter postings and 1 × 1-degree tiles. Santillan et al.,
2016 [51], reported that RMSE for vertical accuracy of ASTER GDEM2 was ±13.25 m.

3.1.3. AW3D30

The panchromatic remote sensing instrument for stereo mapping (PRISM), which is one of the
Advanced Land Observation Satellite (ALOS) onboard sensors, was designed to collect worldwide
high-resolution stereoscopic topographic data. The uniqueness of the ALOS-equipped Greedy
Perimeter Stateless Routing (GPSR) and Satellite Transportable Terminal (STT) instruments includes the
ability of automatic determination of the exterior orientation parameters of PRISM geometry without
ground control points (GCPs) [52]. PRISM line sensors consist of multiple Charge Coupled Device
(CCD) units (6 units for Nadir, 8 units for both forward direction sensor and backward direction sensor)
and each CCD unit has approximately 5,000 detectors with a maximum of four consecutive CCD
units. Each of the four sensors is used for the triplet stereo observations [51]. Takaku and Tadono [53]
revealed that the absolute accuracy of AW3D30 data was about 1.9~2.3 m RMSE for horizontal accuracy
and 2.1~3.4 m RMSE for vertical accuracy (https://www.eorc.jaxa.jp/ALOS/en/aw3d/index_e.htm).

https://tandemx-science.dlr.de/
https://ssl.jspacesystems.or.jp/ersdac/GDEM/E/
https://www.eorc.jaxa.jp/ALOS/en/aw3d/index_e.htm
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3.1.4. Landsat-8 OLI/TIRS

Landsat-8 Operational Land Imager (OLI) data were acquired on 14 April 2013 for
LULC classification and from November 2013 to May 2014 for LST retrieval, respectively
(https://earthexplorer.usgs.gov/). Landsat images are constantly improving by the richness in spectral,
spatial, radiometric, and temporal resolution [54] with the new generations of satellites with improved
sensors. The Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) are instruments
onboard the Landsat-8 satellite, which was launched in February 2013. The satellite collects images of
the Earth with a 16-day repeat cycle, referenced to the Worldwide Reference System-2 [55]. Landsat-8
OLI and Thermal Infra-Red Sensor (TIRS) images consist of nine and two spectral bands, respectively.
Thermal infrared (TIR) remote sensing provides a unique method for obtaining LST information at the
regional and global scales since most of the energy detected by the sensor in this spectral region is
directly emitted by the land surface [56,57]. According to Wessel. B et al. [47], the error level is about
4%-5% in the thermal band number 10. The error level is about 8%-9% in thermal band number 11 of
Landsat-8. In this study, mean LST was calculated for seven months using summer and winter season
images from November 2013 to May 2014.

3.1.5. Reference Data

Ground-based building height information was collected from Capital City Development Authority
(RAJUK). The building height data were collected by the ground survey by RAJUK until December
2018. The ground-based building height information was obtained from Ground Control Points (GCPs)
and digitization of area of individual buildings [58,59]. A high spatial resolution DSM and Digital
Terrain Model (DTM) were generated for DMA using ground-based height information. The DSM
was verified by ground-based height data and Google Earth images. Some errors were observed
in the DSM database such as the DSM values of surrounding single high-rise structures that were
shown to be relatively higher than the actual data. All DSMs were co-registered with the referenced
ground-based DSM using the map registration module in ENVI software. These databases were
referenced to the Universal Transverse Mercator (UTM) zone 46N and World Geodetic System (WGS84)
horizontal datum. Later, Google Earth images were also used for overcoming the drawbacks of the
open-access global DEMs (AW3D30 and ASTER) acquired in different years. About 40 permanent
building structures with no change over time were selected for comparing DSM values to overcome
the difficulty of rapidly growing cities with temporal changes in building height [60,61].

3.2. Method

Figure 4 illustrates a simplified flowchart of the methodology and processing of various data
sources. Building height was estimated using three types of DSM. Therefore, Landsat-8 data were used
to estimate built-up area and TIRS band of Landsat-8 was used to estimate LST. A brief description of
the methodology is given below.

3.2.1. Vertical Growth Assessment

Vertical growth refers to the vertical development of the city as well as to the construction of
high-rise buildings [62]. In this study, building height was estimated using the Digital Building Height
(DBH) model to assess the vertical development of DMA. The extracted building height was validated
with ground-based building height data as described below.

https://earthexplorer.usgs.gov/
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3.2.2. Building Height Extraction

Building height was extracted by generating DBH, i.e, the normalized DSM (nDSM) over the
built-up class pixels. The nDSM was calculated as the difference in elevation values between the
Digital Surface Model (DSM) and DTM (digital terrain model, also known as a bare earth model). It is
essential to distinguish non-ground pixels and ground pixels by generating DTM. Many approaches
are used to generate Digital Elevation Model (DEM) from DSM using a multi-directional processing
and slope-dependent filtering technique called “MSD filters”. Although these approaches are effective
for high accuracy DTM extraction. However, they are generated by the coarse DSM resolution [63–65].
In this study, the morphological approach MSD filtering technique was used for DTM generation.
By using four parameters, which include the Gaussian smoothing kernel size (100 m), the scan
line filter extent (100 m), the height threshold (3 m), and the slope threshold (300), the ground and
non-ground pixels were distinguished. In addition, a linear interpolation technique was used for all
DSM to fill the gaps in generating DTM values. Thereafter, DSM was subtracted from DTM for nDSM
generation. Subsequently, vertical accuracy was also assessed by conventional statistical metrics. Many
previous studies have used advanced approaches for validation. However, due to the coarse spatial
resolution DSM, the pixel-based and object-based height accuracy assessment approaches were used
by statistical metrics in this study. The mean height was considered for the footprint of each building.
Figure 5 illustrates the building height data based on ground information (Figure 5a), TDX-DSM
extracted DBH (Figure 5b), ASTER-GDEM extracted DBH (Figure 5c), and AW3D30 extracted DBH
(Figure 5d). According to ground data, the selected building height is about 26 m while TanDEM-X,
ASTER-GDEM, and AW3D30 data were estimated at 24.5 m, 18 m, and 19.12 m, respectively.
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3.2.3. Built-Up Density (BUD) Analysis

The built-up density is an important indicator for measuring the horizontal spatial growth of
the city. The urban built-up area indicates the areas within a city that are already built-up, under
construction, and mostly impervious surfaces [66]. A simple equation was used to calculate the
built-up density.

BUD = built up area o f x/(total area o f x) (1)

where x is the small unit (ward number) of the study area.
The built-up area was extracted from Landsat-8 OLI images using the Support Vector Machine

(SVM) supervised classification algorithm [67] in ENVI 5.3, as SVM has been shown to provide better
results when limited training samples are available [68]. In this research, a single-pixel classification
was used under featured engineering using the SVM classifier, which was also applied in the previous
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study [69]. Training samples were collected based on the Landsat image supporting with ground-based
data. Thereafter, following the Zhang and Tang study [69], the first eight bands (Band 1to 8) of
Landsat-8 were employed for image classification. Table 3 describes the typology of different land
cover types and their descriptions. A total of 213 training samples were used in the built-up area, water
bodies, vegetation, agriculture, and bare land/sandy area for image classification. Figure 6 shows the
LULC map of the study area. Most of the area covered with a built-up area was followed by bare land.
After the LULC classification, the result was verified using Google Earth Pro. A total of 85 samples
were used for the accuracy assessment. The kappa coefficient was 0.838 with overall accuracy (OA) of
85.8%, user accuracy (recall) of 89%, and producer accuracy (precision) of 81%. Zhang and Tang [67]
introduced that SVM and Random (RF) classifiers are most efficient for built-up area extraction. In their
study, they compared three classifiers including overall accuracy of 0.849, 0.887, and 0.841 for SVM, RF,
and a patch-based approach, respectively. Classification accuracy also acknowledged their findings.

Table 3. Land cover topology.

Land Cover Types Description

Built-up area All infrastructure, settlement, road
Bare Land Fallow land, dry soil, sand filling

Non-built-up area Natural vegetation, parks, agricultural land, wetland, pond,
canal, river, marshy land
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After estimating building height and built-up density, a landscape pattern map was also generated
based on the building height and BUD. Buildings were classified by the height and the density of the
area in which it is located. The BUD was classified into three classes called low (<40%), medium (40%
to < 70%), and high (≥70%). Similarly, building heights were also classified into three classes named
low (<18 m), medium (18 to <48 m) and high (≥48 m). Based on these classifications, a total of nine
types of buildings were classified.

3.2.4. Land Surface Temperature (LST) Retrieval

Landsat 8 Thermal Infrared Sensor (TIRS) data, which measure the energy emitted from the
earth's surface, were downloaded from the US Geological Survey (USGS) Earth Explorer. Cloud-free
Landsat-8 data were downloaded from November 2013 to May 2014 in winter and summer seasons.
TIRS has two longwave thermal bands, band 10 and 11 (10.3–11.3 µm and 11.5–12.5 µm, respectively),
which can be used to retrieve LSTs. To transform reflected solar energy into LST, the radiometric
calibration tools of ENVI 5.3 (IDL) were used. Band 10 of TIRS was used because of less effect by the
stray light issue [55].

In this research, a two-step process was used to retrieve LST from the Landsat-8 considering
unknown land surface emissivity (LSEs) [70]. The heterogeneous land surface has variations in the
emissivity from different surface types. In this research, stepwise LST retrieval methods were followed.
In the first step, the brightness temperatures were calculated by employing atmospheric correction
and spectral radiance. In the second step, LSEs were calculated ranging from 0-1 of different land
covers based on the literature review [36]. The top of atmospheric (TOA) spectral radiance (Lγ) were
calculated by using the following equation.

Radiance (Lγ) = ML*Band 10 + AL (2)

where ML represents the band-specific multiplicative rescaling factor, and AL represents the
band-specific additive rescaling factor. ML and ALcan be obtained from the header file of the
image, ML = 0.0003342, AL = 0.1.

Regarding the effective at-satellite temperature of the viewed Earth-atmosphere system, under the
assumption of a uniform emissivity, spectral radiance could be converted to brightness temperature
obtained by the following equation [39].

T =
K2

ln
(

K1
Lγ + 1

) − 273.15 (3)

where T is the effective at-satellite brightness temperature in oC. K1 = 774.8853 (watts/(m2.ster.µm))
and K2 = 1321.0789 (kelvin) are calibration constants (this can be obtained from the header file of the
image), and Lγ is the spectral radiance in watts/(m2

*ster *µm).
The classification-based emissivity method (CBEM) is the simplest method in terms of processing

and it can provide accurate LSEs for LST retrieval as long as the land surfaces are accurately classified,
and each class has a well-known LSE [71]. A surface emissivity layer was created from reference values
for various land covers employed by other studies [36]. By using the following equation, LST can be
retrieved based on brightness temperature (T) and surface emissivity [37].

LST =

 T
1 + .00115 ∗ T

1.4388 ∗ Ln(ε)

 (4)

where ε is the surface emissivity.
The spatial statistical tool of ArcGIS platform was used for the mean temperature calculation of

the study area. November 2013 to May 2014 Landsat-8-based LST were derived to explore the seasonal
variations in the study area. Based on the previous study by Shahid, 2010 [41], we considered the
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summer season from March to May and the winter season from November to February, respectively.
The findings were validated using the ground-based temperature data from the meteorological station.

3.2.5. LST Impact Assessment

LST can be affected by both two-dimensional (2D) and three-dimensional (3D) urban growth.
According to literature, many studies have looked at the impact of horizontal morphology. However,
few studies have explored the relationship between vertical morphology and temperature, especially
at the city scale. In this study, a non-parametric correlation was investigated for assessing the build-up
density and building height impacts on LST. Therefore, 3D surface plots were also generated to
investigate the relationships among the three variables in the plot.

4. Results

4.1. Building Height

The geo-statistical based comparative analysis of DBH extracted from three DSMs (TanDEM-X,
ASTER, and AW3D30) and ground-based building height is presented in the figures (Figure 7, Figure 8,
and Figure 9) for the Dhaka South City Corporation (DSCC), Dhaka North City Corporation (DNCC),
and fringe area, respectively. The purpose of the comparison is to find out the most suitable DSM for
building height extraction. Figure 7 illustrates that the mean building height extracted by ASTER-DSM
was greater than TanDEM-X, AW3D30, and also greater than the ground-based building height data.
In highly dense areas, where buildings of lower height are shielded by the taller buildings, are difficult
to separate by coarse resolution DEM data. The mean building height extracted by ASTER-GDEM
reveals an overestimation of 2 to 10 m than the ground-based building height data. The mean building
height extracted by TanDEM-X reveals the similarity with ground-based building height data except
for the ward numbers S-03, S-09, and S-13 of DSCC. Because of the faster vertical urban development,
the TanDEM-X-based DBH shows 3 to 6 m underestimation than the ground-based building height
data in the ward numbers S-03, S-09, and S-13. On the other hand, some wards like S-28 to S-35 shows
2 to 3 m overestimation than the ground-based building height data because of the homogeneity effects
present in the high-density areas. The homogeneity effect misleads the height variation and this effect
increases with the decreasing spatial resolution of the satellite data. Mean building height extracted by
AW3D30 spectacles are comparatively less accurate than TanDEM-X and ground data. AW3D30 based
DBH shows 3 to 7 m underestimation as compared to TanDEM-X and ground data.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 27 
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Figure 7. Ward-wise (small administrative boundary) mean building height of Dhaka South City
Corporation (DSCC).
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Figure 8. Ward-wise (small administrative boundary) mean building height of Dhaka North City
Corporation (DNCC).
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Figure 9. Union-wise (small administrative boundary) mean building height of the fringe area.

Figure 8 illustrates the mean building height extracted by ASTER DSM, AW3D30, and TanDEM-X
with respect to ground-based building height data in the DNCC area. The DNCC area is characterized
by a less dense building area when compared to the DSCC. The planned areas of Uttara (N-01),
Bashundhar (N-17), and Basila (N-33) are growing rapidly, which results in the mean building height
being underestimated in comparison to ground data by all datasets. It is understood that building
height using AW3D30 was comparatively less accurate in comparison to TanDEM-X and ground data.
The estimated building height using AW3D30 shows a 3 m to 8 m difference than ground data where
TanDEM-X shows by 1 m to 5 m except ward no. 01 and 02. These two wards are newly developing
areas where backdated satellite data are underestimated when compared to ground-based data.
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Figure 9 illustrates the mean building height in the Fringe areas is about 2.5 m to 7 m. Surprisingly,
the mean height estimate by AW3D30 data was almost linear in the fringe area. This is because the
fringe area was covered by limited/no buildings during the acquisition of AW3D30 data. ASTER data
showed lower building height value than ground data, which was about 1.5 m, 2 m, 2.5 m, and 2.6 m,
respectively, in Dakshingaon, Manda, Matuail, Saralia, and Satarkul unions. Due to the rapid growth
pressure in the fringe area, many buildings have been constructed in this area after the acquisition of
ASTER data. However, the mean building height extracted by TanDEM-X was compatible with the
ground-based building height data except for Nasirabad, Demra, Dumni, and Uttar Khan unions.

Figure 10 illustrates the vertical growth of DMA. Mean building height extracted from TanDEM-X
data matches well with ground-based building height data. It also revealed that the distribution of
building height in DSCC is marginally higher than DNCC, which was about 10.02 m or about the
height of a three-story building. The fringe area is characterized by lower height values, i.e., the value
of 4.98 m or approximately smaller than a two-story building. The mean building height is lower in
the fringe area and higher in the DSCC area, which was ascertained by all data.
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Figure 10. Mean vertical growth of DMA. The Y-axis shows building height by meter and the X-axis
shows three zones of the study area.

4.2. Built-Up Density and Landscape Pattern

Figure 11 and Table 4 reveals the percentage of LULC classes (Figure 11a) and built-up density
(Figure 11b) for the three zones of the DMA, i.e., DNCC, DSCC, and fringe area. Figure 11 also reveals
that, in 2013, the built-up area is covered by 47% of the DMA, which is followed by the bare land of
32%, agriculture of 12%, vegetation of 7%, and waterbody of 7%. The highest percentage of built-up
density is in the DSCC area, which is about 94%. The lowest percentage is in the fringe area, which
is about 44%. The horizontal growth of Dhaka city is mainly occurring in the fringe area because of
the availability of non-built-up areas at the core city. The areas that are more impervious with less
landfill/sand fill and a non-built-up area are observed at the core (DSCC and DNCC) city areas, which
also suggest that horizontal growth follows a process wherein wetland/vegetation is converted to sand
fill and, subsequently, converted to the built-up area. A previous study by Ahmed [39] stated that the
average built-up area of the DMA was about 37%, which is followed by the bare land of 45%, water
body of 9%, and vegetation of 8% using Landsat-5 data (acquisition year 2009). Since the population
pressure is continuously increasing along with industrial development that causes a rapid rate of
increase in built-up areas. The DMA area has lost agricultural land, vegetation, and water bodies by
0.5%, 31.1%, and 10%, respectively, from 2002 to 2014 [72].



Remote Sens. 2020, 12, 1191 15 of 27

Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 27 

that, in 2013, the built-up area is covered by 47% of the DMA, which is followed by the bare land of 

32%, agriculture of 12%, vegetation of 7%, and waterbody of 7%. The highest percentage of built-up 

density is in the DSCC area, which is about 94%. The lowest percentage is in the fringe area, which is 

about 44%. The horizontal growth of Dhaka city is mainly occurring in the fringe area because of the 

availability of non-built-up areas at the core city. The areas that are more impervious with less 

landfill/sand fill and a non-built-up area are observed at the core (DSCC and DNCC) city areas, which 

also suggest that horizontal growth follows a process wherein wetland/vegetation is converted to 

sand fill and, subsequently, converted to the built-up area. A previous study by Ahmed [39] stated 

that the average built-up area of the DMA was about 37%, which is followed by the bare land of 45%, 

water body of 9%, and vegetation of 8% using Landsat-5 data (acquisition year 2009). Since the 

population pressure is continuously increasing along with industrial development that causes a 

rapid r

Figure 11. (a) Pie chart with the percentage of different land use land cover (LULC) classes and (b) 

built-up ratio shared by the Dhaka Metropolitan Area (DMA). 

Figure 12 illustrates the landscape pattern of the built-up area generated by building density and 

height. The fringe area was characterized by low density (<40%) and building height was also low 

(<18 m). Medium (18 to <48 m) and tall (>48 m) buildings were concentrated in the DSCC and DNCC 

areas where building density was also high. Statistical data of building area classification revealed 

that about 38% of total building areas are under the ‘Low height (2.5 m to <19.6 m)-Medium density 

(40% to <70%) class, which is followed by 35% for ‘Low height (2.5mto <19.6m)-High density (>70%)’, 

11% for ‘Low height (2.5m to <19.6m)-Low density (<40%)’, 8% for ‘Medium height (19.6 to <52.48m)-

Medium density (40% to <70%)’, and 7.5% for ‘Medium height (19.6 to <52.48m)-High density (>70%). 

The high height (>52.8 m)-high density (>70%) was only 0.12% of the total building areas. 

Table 4. Landscape pattern. 

Low Density (<40%) Medium Density (40% to <70%) High Density (>70%) 
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Figure 11. (a) Pie chart with the percentage of different land use land cover (LULC) classes and (b)
built-up ratio shared by the Dhaka Metropolitan Area (DMA).

Table 4. Landscape pattern.

Low Density (<40%) Medium Density
(40% to <70%) High Density (>70%)

Low height (2.5 m to
<19.6 m) 11% 38% 35%

Medium height (19.6 to
<52.48m) 1% 7.5% 7%

High height (>52.8m) 0.05% 0.07% 0.12%

Figure 12 illustrates the landscape pattern of the built-up area generated by building density and
height. The fringe area was characterized by low density (<40%) and building height was also low
(<18 m). Medium (18 to <48 m) and tall (>48 m) buildings were concentrated in the DSCC and DNCC
areas where building density was also high. Statistical data of building area classification revealed that
about 38% of total building areas are under the ‘Low height (2.5 m to <19.6 m)-Medium density (40% to
<70%) class, which is followed by 35% for ‘Low height (2.5 m to <19.6 m)-High density (>70%)’, 11% for
‘Low height (2.5 m to <19.6 m)-Low density (<40%)’, 8% for ‘Medium height (19.6 to <52.48 m)-Medium
density (40% to <70%)’, and 7.5% for ‘Medium height (19.6 to <52.48 m)-High density (>70%). The high
height (>52.8 m)-high density (>70%) was only 0.12% of the total building areas.



Remote Sens. 2020, 12, 1191 16 of 27
Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 27 

 

Figure 12. The left side shows the built-up density and building height, while the right side shows the 

building type based on building height and density. In the map N, S, and F, refer to DNCC, DSCC, 

and fringe area, respectively. 

4.3. Land Surface Temperature (LST) 

Figures 13 and 14 illustrate the variations of LST in DSCC, DNCC, and fringe area in comparison 

with the meteorological data of DMA from November 2013 to May 2014. The findings reveal that the 

highest LST (36.5 C) was found in March (summer season). On the other hand, the lowest LST (22.2 

C) was found in December (winter season). The highest maximum (36.5 C) and the lowest minimum 

(22.2 C) LST value was in the fringe area and the lowest maximum (34 C) and the highest minimum 

(22.2 C) LST value was in the DSCC. The statistical data shows a standard deviation of about 1.51 

C, 1.24 C, and 1.07 C, respectively, in the fringe area, DNCC, and DSCC during the summer season. 

On the other hand, the standard deviation was about 1.33 C, 0.73 C, and 0.69 C, respectively, in the 

fringe area, DNCC, and DSCC during the winter season. However, this difference was highest during 

the summer season. The maximum temperature difference in the fringe area was about 12.5 C, which 

is followed by 9.30 C in the DNCC area and 8.61 C in the DSCC area during March. The minimum 

temperature difference in the fringe area was about 8 C. This is followed by 7 C in the DNCC area 

and 6 C in the DSCC area during December. Singh et al. [73] observed the maximum temperature 

difference was in agricultural areas, which was followed by rural areas, and urban built-up areas in 

Delhi. This supports our findings in Dhaka. While the difference between the maximum and 

minimum temperature was low in the DSCC area, the mean LST was always high in the DSCC area. 

This is because the higher impervious surface at the DSCC area has a low albedo effect and absorbs 

most of the incoming solar radiance in the daytime. However, they re-radiate the absorbed solar 

energy during the night in the form of thermal heating. Figure 14 reveals that, in the summer season, 
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4.3. Land Surface Temperature (LST)

Figures 13 and 14 illustrate the variations of LST in DSCC, DNCC, and fringe area in comparison
with the meteorological data of DMA from November 2013 to May 2014. The findings reveal that the
highest LST (36.5 ◦C) was found in March (summer season). On the other hand, the lowest LST (22.2 ◦C)
was found in December (winter season). The highest maximum (36.5 ◦C) and the lowest minimum
(22.2 ◦C) LST value was in the fringe area and the lowest maximum (34 ◦C) and the highest minimum
(22.2 ◦C) LST value was in the DSCC. The statistical data shows a standard deviation of about 1.51 ◦C,
1.24 ◦C, and 1.07 ◦C, respectively, in the fringe area, DNCC, and DSCC during the summer season.
On the other hand, the standard deviation was about 1.33 ◦C, 0.73 ◦C, and 0.69 ◦C, respectively, in the
fringe area, DNCC, and DSCC during the winter season. However, this difference was highest during
the summer season. The maximum temperature difference in the fringe area was about 12.5 ◦C, which
is followed by 9.30 ◦C in the DNCC area and 8.61 ◦C in the DSCC area during March. The minimum
temperature difference in the fringe area was about 8 ◦C. This is followed by 7 ◦C in the DNCC area
and 6 ◦C in the DSCC area during December. Singh et al. [73] observed the maximum temperature
difference was in agricultural areas, which was followed by rural areas, and urban built-up areas in
Delhi. This supports our findings in Dhaka. While the difference between the maximum and minimum
temperature was low in the DSCC area, the mean LST was always high in the DSCC area. This is
because the higher impervious surface at the DSCC area has a low albedo effect and absorbs most of
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the incoming solar radiance in the daytime. However, they re-radiate the absorbed solar energy during
the night in the form of thermal heating. Figure 14 reveals that, in the summer season, about 50% area
LST range is between 28 to <30 ◦C and 30% area LST range is between 26 to <28 ◦C. On the other hand,
in the winter season, about 60% area LST range is between 24 to <26 ◦C. A previous study showed the
LST range is between 27 to <30 ◦C in 44% of DMA in 2009 [39].
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Figure 14. The average of summer (March to May 2014) land surface temperature (LST) (left) and the
average of winter (November 2013 to February 2014) LST (right) in the map N, S, and F refer to DNCC,
DSCC, and fringe area, respectively.
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Figure 15a,b illustrate the average mean LST of DMA in the summertime (March to May) and
wintertime (November to February) seasons. It reveals that the median LST was the highest in the
DSCC (29.30 ◦C in the summer and 25.50 ◦C in the winter) during both seasons, which is followed
by the DNCC (29 ◦C in the summertime and 26 ◦C in the wintertime) and fringe area (28 ◦C in the
summertime and 25.1 ◦C in the wintertime). It also reveals that the maximum and minimum LST
difference was found in the fringe area. This is followed by the DNCC and DSCC, which can also be
understood from Figure 14. However, the maximum and minimum LST differences were higher in
the winter season than the summer season of all areas, which was mostly observed in the DSCC and
DNCC areas. The statistical analysis revealed the summer and winter season LST differences that are
statistically significant (level <0.01).
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Meteorological station-based temperature data were used for the validation of the Landsat
extracted LST. The meteorological station lies in the “Low Height-High density” area at 23◦46′30”N
latitude and 90◦24′17”E longitude. Monthly mean LST was compared with meteorological station-based
ambient air temperature (Figure 16) for the accuracy assessment. The average value by 3 × 3 pixel
of Landsat derived LST values were compared with the ground station. Satellite-based LST showed
approximately 1 to 6 ◦C higher than the air temperature (Tair) and the differences observed were mostly
in November and February. Gallo et al. [74] also observed LST is approximately 1 to 8 ◦C higher than
Tair in a cloud-free sky. Because of the cooling effect of urban vegetation, shading and consuming latent
heat via evapotranspiration, the presence of vegetation alone can reduce the Tair by 1 to 5 ◦C during the
summer season [36]. In the winter season, evapotranspiration happens more slowly than during the
summer season, which results in the temperature differences being higher during the winter season.

4.4. LST Impact Assessment

The impact of urban spatial growth on LST was revealed through statistical analysis. Figures 17
and 18 illustrate the impact of built-up density and building height on LST, respectively. The impact of
the landscape pattern based on building height and density on LST is represented by the 3D surface
plot in Figure 19 and Table 5.
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Figure 17. Relationship between (a) built-up density and summer land surface temperature (LST),
(b) built-up density, and winter LST where the Y-axis shows LST in degree Celsius, the X-axis shows
built-up density, and the red line is the slope of the correlation coefficient.

4.4.1. Correlation Analysis

Figure 17 illustrates the correlation between built-up density and LST. The correlation was higher in
the summer season as compared to the winter season. The non-parametric correlation analysis showed
the value of Kendall’s tau correlation coefficient of LST-built-up density was 0.625 and 0.483 (with
significance level <0.01) in the summer and winter seasons, respectively. In the summer, the LST value
was mostly concentrated around the trend line, which means a strong correlation. However, some high
LST values were found in the less built-up density areas because of the presence of highly responsive
thermal surfaces in the fringe area like dry soil/sand filling area and metallic/steel roof. Additionally,
low LST values were observed in the highly-dense areas due to the presence of surrounding thermal
cooling surfaces of non-built-up areas such as water bodies, green spaces, shadows, and older roofs.
Bhargava et al. [5] investigated that the roof and pavement surfaces were hotter than the ambient air
during the sunny summer day, while shaded or moist surfaces in rural surroundings remained close to
air temperature. In the winter season, the LST values were distributed in a scattered manner along the
trend line. It was also observed that, in the low-density areas, LST values were high. However, the LST
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value was mostly below the trend line in the dense areas. The downwelling sun’s radiance can directly
reach the surface of the low-density areas, which results in an increase in LST in open land, soil, road,
bare land, and low-density areas where built-up density is low.
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Table 5. LST characteristics of different landscape patterns of the built-up area.

Building
Height/Built-Up

Density/ Mean LST

Built-Up Density

High Medium Low High Medium Low
Summer LST Winter LST

Building
Height

High 29.32 ◦C 29.28 ◦C 29.15 ◦C 28.03 ◦C 27.67 ◦C 27.38 ◦C
Medium 29.96 ◦C 29.42 ◦C 29.12 ◦C 28.08 ◦C 27.57 ◦C 27.61 ◦C

Low 30.24 ◦C 29.33 ◦C 28.41 ◦C 28.32 ◦C 27.85 ◦C 26.77 ◦C

Figure 18a,b illustrate the variation of building height and LST of DMA in summer and winter
seasons. It shows that building height has a very weak correlation with LST. However, the LST values
shown were more positively correlated with building height in the summer season as compared to
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the winter season. The non-parametric correlation analysis showed that the summer LST-Vertical
growth and winter LST-Vertical growth Kendall’s tau correlation coefficient was, respectively, 0.156
and 0.056 (with the significance level <.01). To support the findings of this study, Guo et al. [75] also
observed the LST and building height R2 value was 0.126 in the summer and approximately 0.077 in
the winter in Guangzhou city, China. The cause behind this is as follows. In the summer, geometric
surface heterogeneous effects respond better than in the winter. In the winter, results revealed a very
weak relationship and the LST values were distributed within 22.3 ◦C to 29 ◦C without considering
building height. However, a significant number of high LST points concentrated in low-height building
areas were also observed during both the summer and the winter. Because of metallic roofs in newly
developed low-height tin shade houses, new concrete roofs exist in the ward numbers S-24, S-49, S-55,
S-56, and S-57. In addition, due to the existence of low-height industrial buildings in Ward numbers
S-14, S-52, S-53, N-24, and Shyampur Union, high LST values were also observed in these areas.

4.4.2. Three-Dimensional (3D) Surface Plot

Figure 19 illustrates the three-dimensional surface plot of mean LST, vertical growth, and built-up
density of DMA. High LST values were found in high-rise and low-rise buildings of high-density
areas. Due to the congested concrete building, metallic rooftops, absent of open spaces in lower height
building areas, LST were found to be higher in both seasons. The congested buildings and narrow
street canyons prevent solar radiation from heating the streets directly in the daytime [76,77]. Therefore,
cooling factors do not work properly in dense urban areas because remote sensing based LST data was
directly extracted from rooftop surfaces by disregarding heterogeneous surfaces. On the other hand,
low LST values were found in less dense areas for both high-rise and low-rise buildings. In low-density
areas, the presence of water bodies, green spaces, streets, and open soil result in a cooler surrounding
environment for areas with tall buildings especially in the DNCC area. The lowest mean LST was
found in the built-up area (40%) where the mean height was about 3 m in both summer and winter
seasons. On the other hand, the highest LST was found in the areas where the building height and
built-up ratio were also high. It was also revealed that the LST was high in areas where the building
height was low, but the built-up ratio was high (90%).

The highest mean LST was found in the ‘Low height-high density’ area, which was approximately
30 ◦C (Table 5). On the other hand, the lowest LST was found in the ’Low height-low density’ area in
both the summer and the winter. This also acknowledges the results discussed in Section 4.4.2 of this
study. The LST value showed gradients from low-density to high-density areas. Similarly, the previous
study by Zheng et al. [78] revealed that residential neighborhoods in Beijing city, China have low
LST effects compared to low-height buildings. Their study also found that low-height buildings have
higher LST than tall buildings. These findings were also confirmed by this study.

5. Discussion

Urban growth (both vertical and horizontal) and its impact on LST was investigated using remote
sensing data of DMA. The effect of spatial growth on LST with season variations was also investigated
in this study. Four key issues of this study, including the accuracy of building height estimation,
built-up density calculation, LST estimation, and LST impact assessment on building height and
built-up density are discussed in this section.

Building heights were extracted by employing the Normalized Digital Surface Model (nDSM)
and verified by the ground-based building height dataset. With the support of ground-based data and
updated high-resolution DSM, it is possible to obtain more precise building heights as well as vertical
growth information. TanDEM-X 12m DSM data offered better accuracy than other low-resolution
DSMs such as AW3D30 and ASTER (GDEM). Dense building areas offer the maximum frequency
of height error where a low height building is covered by the tall building, which results from the
inclination effect of the satellite image [79]. Since the average building height of DMA is about
9 m, the AW3D30 offers the maximum height error (3 to 7m). It is suitable for estimating building
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height taller than 9 m [80]. High-resolution DSM is more efficient in estimating building height than
low-resolution DSMs. However, DBH generation is still a challenge using outdated and low-resolution
DSM, especially in rapidly growing cities. This is because, in the fringe or peripheral area of rapidly
growing cities, the spatial growth rate is very high, which makes it difficult to estimate building height
using previous years’ data. Apart from that, due to the increase of multiple scattering effects and small
dimensions of buildings, it is problematic to extract building height using low-resolution DSMs in the
densely built-up urban areas. Furthermore, due to the differences in ground elevation, the irregular
elevation of rooftops, building shadow effect, inaccurate DSM filtering, assumption of flat ground and
rooftops, the congested neighbor building effect cannot delineate the individual structure efficiently.
Therefore, building heights are sometimes overvalued or underrated. To overcome these challenges,
a morphological approach MSD filtering technique was used for DTM extraction. Moreover, the DSM
was masked by road network data because this urban feature mostly lies on the ground surface and
can be used as additional terrain reinforcement information. Low or medium resolution data can
provide a valuable source of building height information in studying vertical expansion on a large
scale if high-resolution data are not available.

By employing Landsat 8 data, the built-up area was extracted using SVM classifier to estimate
built-up density. All infrastructure and settlements were classified as built-up areas. It is difficult
to further classify these built-up areas into residential, commercial, and industrial areas using 30 m
resolution data. However, to reduce this limitation, the landscape pattern of the built-up area based
on building height and built-up density is expedient for realizing the development pattern of DMA.
Previous studies investigated the relationship between LST and Local Climate Zone (LCZ) using the
World Urban Database and Access Portal Tools (WUDAPT) scheme [81,82]. In their study, they used a
training sample for LCZ mapping assisting with Google Earth Engine, Google Street view, and NDVI
(Normalized Difference Vegetation Index) data. Therefore, a total of 17 types of LCZ were classified
using random forest classifiers based on the hypothesized training sample. Their study did not focus
to quantify the building height scientifically and landscape pattern accordingly. Apart from that,
the coverage of Google street view data is not available for global cities and also not well attributed.
However, the proposed method in this study is more holistic and informative for urban planners
in city-shaping.

LST was retrieved from November 2013 to May 2014 to explore the seasonal variation of LST.
The mean LST was low in the fringe area than DNCC and DSCC because of the existing dry soil, sand,
and impervious areas that reflect more solar radiation. Apart from that, natural features in the fringe
area can retain thermal energy by evapotranspiration, which can reduce the amount of thermal energy
that reaches the surface and gets emitted into the atmosphere [24]. On the other hand, the spectral
response of thermal energy in the core city area is high because of the presence of more impervious
areas [83]. The highest mean LST was at the DSCC area because of having more impervious areas,
congested buildings, albedo effects, and low air circulation [84]. The LST is highly affected by seasonal
variations in both the core city area and its surroundings because of low down-welling radiance in the
winter (November to February) and high down-welling radiance in the summer at the mid-latitude
tropical region [85].

Building density has a strong positive correlation to LST than building height, and this correlation
is significantly affected by seasonal variations. It was also acknowledged by the previous study in
Guangzhou, China [75]. In their study, they concluded that building density has a stronger correlation
with LST than building height. They also observed that urban morphology is not only the cause of LST
but also has some other factors such as anthropogenic heat, wind speed, rainfall, nearby river or ocean,
air temperature, and topography. High building density increases population density, which also
increases anthropogenic heat-producing activities. However, this study did not consider the topography,
rainfall, and wind speed issues during the LST impact assessment. Han G. and Xu J [38] investigated
that high-temperature anomalies were closely associated with built-up land, densely populated zones,
and heavily industrialized districts. Moreover, high-rise buildings, glasshouses, congested buildings,
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less/no setback areas in the DSCC area, and part of DNCC area are also responsible for high LST in
DMA. This study is on city-scale, which is mainly characterized by mixed-use (residential, commercial,
industrial), minimal vegetation, dense building area, narrow road width, low land-building ratio,
and building materials, which are highly sensitive to solar radiance. This has significant effects on
the urban heat island (UHI) effect. The impact of the landscape pattern on LST was also affected by
seasonal variations. In both summer and winter seasons, it was noticed that ‘low height-high density’
building area was responsible for higher LST. On the other hand, the ‘low height-low density’ building
area was responsible for lower LST. Therefore, it is clear that density is the key driver of increasing LST.

The findings presented in this paper suggest that vertical development is better than horizontal
development, which provides enough open spaces, green spaces, and preserves natural features.
A study by Zheng et al. [78] revealed that higher residential buildings have low LST effects in a
neighborhood-scale residential area mixed with residential buildings and enough vegetation, which
results in a significant cool island effect. In this context, urban sprawl must be controlled to improve
the microclimate environment of DMA. It is also suggested that low-height building areas such as
S-43, S-55, S-56, and S-57 desperately demand LST cooling surfaces. Violation of the Floor Area Ratio
(FAR) regulation, the absence of height zoning, the absence of Bangladesh National Building Code
(BNBC), weak monitoring of development, less attention paid by city planning authorities toward
building construction, and unplanned and haphazard spatial growth of the city may be the driving
forces of LST in DMA. However, without the appropriate planning tools such as decentralization, green
belts, increase in open/green spaces in the core city by redevelopment/land readjustment technique,
public awareness about city planning rules/regulations, and increased responsibility of the concerned
authorities, it is difficult to stop the adverse impacts of spatial growth. On the other hand, for areas
that are already densely built-up, building renovations incorporating green building materials and
rooftop greenery can help reduce the LST.

6. Conclusions

In conclusion, this study was the first attempt at observing the effect of spatial city growth
(both vertical and horizontal) on LST using satellite remote sensing data and geospatial techniques in
the DMA area. The following conclusions, while considering all previous literature, were reached:
(a) TanDEM-X DSM offers higher vertical accuracy than other similar satellite-derived DBH, (b) dense
built-up areas are highly vulnerable to solar radiation, (c) built-up density vs. LST has a stronger
relationship than Vertical growth vs. LST, and (d) LST is significantly affected by seasonal variations.
The analyses in this study were conducted using remote sensing data from 2013 to 2014. Further
research should pursue more findings to validate this research using more accurate and up-to-date
datasets. During the height calculation, the rooftops of buildings were considered flat. In addition,
the LST was retrieved without considering day-time and night-time temperatures, humidity, and
other factors relating to LST. In addition, the impact of landscape patterns of the non-built up area
and urban functional zones on LST was not investigated. Lastly, in future research, it is important to
examine more cities while also overcoming the above-mentioned limitations.

Author Contributions: Conceptualization, M.M.R., R.A., P.M., and W.T. Methodology, M.M.R., R.A., A.P.Y.,
and J.D. Validation, M.M.R. and R.A. Formal analysis, M.M.R. and R.A. Investigation, M.M.R. Resources, R.A.
Data curation, M.M.R., R.A. Writing—original draft preparation, M.M.R. and R.A. Writing—review and editing,
M.M.R., R.A., A.P.Y., J.D., P.M., W.T., P.K., N.S., B.A.J., R.D., A.K., S.C., and T.A.K. Visualization, M.M.R. and R.A.
Supervision, R.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Hokkaido University and Japan Student Services
Organization (JASSO) for providing fellowship. We are also thankful to the Global Challenge Research Funds
(GCRF) of the University of Glasgow. We are thankful to the German Aerospace Center (DLR) for TanDEM-X
data grant DEM_URBAN2809, Japan Aerospace Exploration Agency (JAXA) EORC data grant ER2A2N133,
Earth Remote Sensing Data Analysis Center (ERSDAC), and the United States Geological Survey (USGS) for
providing satellite data. Authors acknowledge the support of the Capital City Development Authority (RAJUK),



Remote Sens. 2020, 12, 1191 24 of 27

Dhaka, Bangladesh for providing necessary data and information. We appreciate the contribution made by the
anonymous reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bek, M.; Azmy, N.; Elkafrawy, S. The effect of unplanned growth of urban areas on heat island phenomena.
Ain Shams Eng. J. 2018, 9, 3169–3177. [CrossRef]

2. Wong, N.H.; Yu, C. Study of green areas and urban heat island in a tropical city. Habitat Int. 2005, 29, 547–558.
[CrossRef]

3. Coutts, A.; White, E.C.; Tapper, N.; Beringer, J.; Livesley, S. Temperature and human thermal comfort effects
of street trees across three contrasting street canyon environments. Theor. Appl. Clim. 2015, 124, 55–68.
[CrossRef]

4. Santamouris, M. Energy and Climate in the Urban Built Environment; Informa UK Limited: Colchester, UK,
2013.

5. A, B.; S, L. Urban heat island effect: it’s relevance in urban planning. J. Biodivers. Endanger. Species 2017, 5,
5–187. [CrossRef]

6. Guo, Z.; Wang, S.; Cheng, M.; Shu, Y. Assess the effect of different degrees of urbanization on land surface
temperature using remote sensing images. Procedia Environ. Sci. 2012, 13, 935–942. [CrossRef]

7. Cuberes, D. Sequential city growth: Empirical evidence. J. Urban Econ. 2011, 69, 229–239. [CrossRef]
8. Naserikia, M.; Shamsabadi, E.A.; Rafieian, M.; Filho, W.L. The urban heat island in an urban context: a case

study of Mashhad, Iran. Int. J. Environ. Res. Public Heal. 2019, 16, 313. [CrossRef]
9. Bonafoni, S.; Keeratikasikorn, C. Land surface temperature and urban density: Multiyear modeling and

relationship analysis using MODIS and Landsat data. Remote Sens. 2018, 10, 1471. [CrossRef]
10. Mushore, T.D. Linking thermal variabilty and change to urban growth in harare metropolitan city using

remotely sensed data. PhD Thesis, University of Zimbabwe, Harare, Zimbabwe, 15 December 2017.
11. Jalan, S.; Sharma, K. Spatio-temporal assessment of land use/land cover dynamics and urban heat island of

Jaipur city using satellite data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 767. [CrossRef]
12. Avdan, U.; Jovanovska, G. Algorithm for automated mapping of land surface temperature using LANDSAT

8 satellite data. J. Sensors 2016, 2016, 1–8. [CrossRef]
13. Avtar, R.; Tripathi, S.; Aggarwal, A.K.; Kumar, P. Population–Urbanization–Energy Nexus: A Review. Resour.

2019, 8, 136. [CrossRef]
14. Hung, W.-C.; Chen, Y.-C.; Cheng, K.-S. Comparing landcover patterns in Tokyo, Kyoto, and Taipei using

ALOS multispectral images. Landsc. Urban Plan. 2010, 97, 132–145. [CrossRef]
15. Avtar, R.; Aggarwal, R.; Kharrazi, A.; Kumar, P.; Kurniawan, T.A. Utilizing geospatial information to

implement SDGs and monitor their Progress. Environ. Monit. Assess. 2020, 192, 35. [CrossRef] [PubMed]
16. Ferdous Jannatul, R.T. Temporal Dynamics and Relationship of Land Use Land Cover and Land Surface

Temperature in Dhaka. In Proceedings of the 4th International Conference on Civil Engineering for
Sustainable Development (ICCESD 2018), KUET, Khulna, Bangladesh, 9–11 February 2018.

17. Alobeid, A.; Jacobsen, K.; Heipke, C. Comparison of matching algorithms for DSM generation in urban areas
from Ikonos imagery. Photogramm. Eng. Remote Sens. 2010, 76, 1041–1050. [CrossRef]

18. Avtar, R.; Sawada, H. Use of DEM data to monitor height changes due to deforestation. Arab. J. Geosci. 2012,
6, 4859–4871. [CrossRef]

19. Buyantuyev, A.; Wu, J. Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in
surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 2009, 25, 17–33. [CrossRef]

20. Arnfield, A.J. Two decades of urban climate research: a review of turbulence, exchanges of energy and water,
and the urban heat island. Int. J. Clim. 2003, 23, 1–26. [CrossRef]

21. Ramaiah, M.; Avtar, R. Urban green spaces and their need in cities of rapidly urbanizing India: A review.
Urban Sci. 2020, 3, 94. [CrossRef]

22. Grover, A.; Singh, R. Analysis of urban heat island (UHI) in relation to normalized difference vegetation
index (NDVI): A comparative study of Delhi and Mumbai. Environ. 2015, 2, 125–138. [CrossRef]

23. Groleau, D.; Mestayer, P.G. Urban Morphology Influence on Urban Albedo: A Revisit with the S olene Model.
Boundary-layer Meteorol. 2013, 147, 301–327. [CrossRef]

http://dx.doi.org/10.1016/j.asej.2017.11.001
http://dx.doi.org/10.1016/j.habitatint.2004.04.008
http://dx.doi.org/10.1007/s00704-015-1409-y
http://dx.doi.org/10.4172/2332-2543.1000187
http://dx.doi.org/10.1016/j.proenv.2012.01.087
http://dx.doi.org/10.1016/j.jue.2010.10.002
http://dx.doi.org/10.3390/ijerph16030313
http://dx.doi.org/10.3390/rs10091471
http://dx.doi.org/10.5194/isprsarchives-XL-8-767-2014
http://dx.doi.org/10.1155/2016/1480307
http://dx.doi.org/10.3390/resources8030136
http://dx.doi.org/10.1016/j.landurbplan.2010.05.004
http://dx.doi.org/10.1007/s10661-019-7996-9
http://www.ncbi.nlm.nih.gov/pubmed/31828438
http://dx.doi.org/10.14358/PERS.76.9.1041
http://dx.doi.org/10.1007/s12517-012-0768-2
http://dx.doi.org/10.1007/s10980-009-9402-4
http://dx.doi.org/10.1002/joc.859
http://dx.doi.org/10.3390/urbansci3030094
http://dx.doi.org/10.3390/environments2020125
http://dx.doi.org/10.1007/s10546-012-9786-6


Remote Sens. 2020, 12, 1191 25 of 27

24. Taha, H. Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy Build.
1997, 25, 99–103. [CrossRef]

25. Yuan, J.; Emura, K.; Farnham, C. Is urban albedo or urban green covering more effective for urban microclimate
improvement?: A simulation for Osaka. Sustain. Cities Soc. 2017, 32, 78–86. [CrossRef]

26. Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M.
Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban
planning and climate change adaptation. ISPRS J. Photogramm. Remote Sens. 2014, 89, 59–66. [CrossRef]

27. Dousset, B.; Gourmelon, F. Satellite multi-sensor data analysis of urban surface temperatures and landcover.
ISPRS J. Photogramm. Remote Sens. 2003, 58, 43–54. [CrossRef]

28. Cao, L.; Li, P.; Zhang, L.; Chen, T. Remote sensing image-based analysis of the relationship between urban
heat island and vegetation fraction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37.

29. Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A. Urban greening to cool towns and cities: A systematic
review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [CrossRef]

30. Abraham, S. The relevance of wetland conservation in Kerala. Int. J. Fauna Biol. Stud. 2015, 2, 1–5.
31. Zhang, W.; Li, W.; Zhang, C.; Ouimet, W.B. Detecting horizontal and vertical urban growth from medium

resolution imagery and its relationships with major socioeconomic factors. Int. J. Remote Sens. 2017, 38,
3704–3734. [CrossRef]

32. Yang, C.; He, X.; Wang, R.; Yan, F.; Yu, L.; Bu, K.; Yang, J.; Chang, L.; Zhang, S. The effect of urban green
spaces on the urban thermal environment and its seasonal variations. For. 2017, 8, 153. [CrossRef]

33. Ranagalage, M.; Estoque, R.C.; Murayama, Y. An urban heat island study of the Colombo metropolitan area,
Sri Lanka, based on Landsat data (1997–2017). ISPRS Int. J. Geo-Information 2017, 6, 189. [CrossRef]

34. Avtar, R.; Kumar, P.; Oono, A.; Saraswat, C.; Dorji, S.; Hlaing, Z. Potential application of remote sensing
in monitoring ecosystem services of forests, mangroves and urban areas. Geocarto Int. 2017, 32, 874–885.
[CrossRef]

35. Gage, E.A.; Cooper, D.J. Relationships between landscape pattern metrics, vertical structure and surface
urban Heat Island formation in a Colorado suburb. Urban Ecosyst. 2017, 20, 1–1238. [CrossRef]
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