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Abstract: Satellite-based gross primary production (GPP) estimation has uncertainties due to shadow
fraction caused by the geometric relationship between the complex forest structure and the Sun.
The virtual forests allow shadow fraction estimation without 3D measurements, but require optimal
structural parameters. In this study, we developed the reflectance simulator (Canopy-level Shadow
and Reflectance Simulator, CSRS) that considers tree shadows and the method to determine the
optimal canopy shape for shadow fraction estimation. The target forest is any tropical evergreen
forest which accounts for 58% of tropical forests. Firstly, we analyzed the effects of canopy shape
on the reflectance simulation based on virtual forests created with different canopy shapes. This
result was checked by Tukey’s honestly significant difference (HSD) test. Secondly, the optimal
canopy shape was determined by comparing the reflectance from Sentinel-2 Band 4 (red) bottom
of atmosphere reflectance with those simulated from virtual forests. Finally, the shadow fraction
estimated from the virtual forest was evaluated. Since the focus of this study was to derive the
optimal canopy shape, unmanned aerial vehicle (UAV) structure from motion (SfM) was used to
obtain the parameters other than canopy shape and to validate the estimated shadow fraction. The
results showed that when the Sun zenith angle (SZA) was more than 20°, significant differences were
observed among canopy shapes. The least root mean square error (RMSE) for reflectance simulation
was 0.385 from the canopy shape of a half ellipsoid. Moreover, the half ellipsoid also showed the
smallest RMSE in estimating shadow fraction (0.032), which indicated the reliability and applicability
of CSRS. This study is the first attempt to determine the optimal canopy shape for estimating shadow
fraction and is expected to improve the accuracy of GPP estimation in the future.

Keywords: virtual forest; canopy shape; geometrical optical model; sun zenith angle

1. Introduction

Tropical forests account for 45% of the world’s forests [1] and 34% of global ground
gross primary production (GPP) [2]. Tropical evergreen forests are some of the most
important tropical forests, and are the majority of them, up to 58% [3]. Due to cloud
contamination and the complicated three-dimensional (3D) structure of forests, it is difficult
to estimate the GPP using remote sensing with high accuracy in such forests. Recently,
geostationary satellites such as HIMAWARI and GOES [4,5] have provided opportunities
to acquire cloud-free images. However, uncertainties caused by the complicated forest
structures remain. In particular, the shadow fraction is a major determinant of leaf surface
conductance, which in turn affects the net photosynthetic rate and therefore, light use
efficiency (LUE) and GPP of the forest [6,7]. Hilker et al. (2008) [8] showed that the
inclusion of shadow fraction calculated from the digital surface model (DSM) in the LUE
parameters increased the variance of the LUE by 5–16% compared to existing models driven
by climate variables alone. Their study emphasized the importance of including shadow
fraction caused by forest structure in LUE modeling, but limited measurements made it
difficult to apply on a larger scale.
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One of the methods to estimate the shadow fraction without 3D measurement is to use
virtual forests. An advantage of using virtual forests is the estimation of diurnal shadows.
A virtual forest is often used to develop an equation relating the physical quantity of the
forest to the reflectance observed by the satellite sensor. Since the shadow fraction is closely
related to the forest roughness [9], the virtual forest should be composed of tree models
at level 2—which consider geometric characteristics such as canopy shape, crown width
and crown depth—or higher according to the level of tree (LOT) [10]. Currently, there is
an increasing number of globally available datasets on forest structure, such as tree height
(TH) [11–13] and tree density [14]. Despite canopy shape also being an important parameter
that determines forest surface roughness [15], it is estimated by researcher’s experience or
assigned by a forest category defined by the International Geosphere-Biosphere Programme
(IGBP). Typically, cones and ellipsoids are used for coniferous forests and broadleaf forests
to represent canopy shapes, respectively, [16–18]. However, the canopy shapes for tropical
rainforests with various tree species are uncertain, depending on the experience of different
researchers. Therefore, it is necessary to determine the optimal canopy shape for virtual
forests to estimate the shadow fraction. Moreover, in some satellite-based products, such
as clumping index (CI), it has also been pointed out that we should correctly assign the
canopy shape because the product is sensitive to the shadow fraction [19,20].

The shadow fraction generated by the forest surface significantly alters the reflectance
observed in the bidirectional reflectance distribution function (BRDF) [21,22]. This implies
that the closer the shadow fraction estimated from the virtual forest is to one from the
actual forest, the closer the reflectance simulated from the virtual forest is to that observed
by the satellite. Therefore, it is expected that the shadow fraction of the actual forest can
be estimated by using a virtual forest with the least reflectance simulation error among
the virtual forests with different structural parameters. The reflectance simulation model
must account for the shadows of the trees. The objective of this study was to develop a
reflectance simulator (Canopy-level Shadow and Reflectance Simulator; CSRS), and to find
the optimal canopy shape for estimating the shadow fraction using the reflectance observed
by satellite sensors as a constraint.

Several challenges were already known of for reflectance simulation approaches [23].
The first is the accuracy of structural parameters other than canopy shape. In this study,
parameters such as crown coverage (CC) and TH were obtained by unmanned aerial
vehicle (UAV) structure from motion (SfM). The second is using absolute reflectance as a
constraint condition. If a parameter of CSRS, such as spectral reflectance of leaves, differs
from the actual one, the error will be large, even if other parameters are accurate. Therefore,
relative reflectance is used in this study (the ratio of absolute reflectance in two seasons). In
case the phenological change is less, as in tropical rainforests [24], it is assumed that the
change in reflectance observed by the satellite in the two seasons is affected by shadow
due to canopy shape and Sun zenith angle (SZA). The size of the virtual forest should
consider the spatial resolution of satellite sensors. If the target sensor is MODIS with a
spatial resolution of 500 m, it may result in a heterogeneous forest structure within a pixel.
This means the parameter setting is complicated (e.g., cylinder 30% and ellipsoid 70%).
Therefore, in this study, Sentinel-2 satellite, which has a high spatial resolution (10–20 m)
and is freely available, was selected as the target. We assumed that the forest within one
pixel of Sentinel-2 is composed of a single canopy shape. The main objectives of this study
using CSRS were: (1) to analyze the effects of canopy shape on simulating reflectance, (2) to
obtain the optimal canopy shapes of virtual forests by reflectance simulation, and (3) to
evaluate the performance of the optimal canopy shape on shadow fraction estimation.
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2. Methodology
2.1. Study Area

The tropical rainforest in this study is located in Yangon Technological University
(16.8◦N, 96.1◦E), Myanmar, as displayed in Figure 1. The size of the study area is
400 m × 200 m. The study area is flat, being without mountains or other high build-
ings, and has a tropical monsoon climate [25]. This forest is composed of several tree
species, not one.

Figure 1. Location of the study area: (a) Overall target forest (red rectangular shows the target area of
400 m × 200 m). (b,c) Photographs taken by UAV (30 September 2018).

2.2. Sentinel-2 Image

The Bottom Of Atmosphere (BOA) reflectance provided by the Level-2 product from
Sentinel-2 was used as a constraint to use when determining the optimal canopy shape for
estimating shadow fraction. The red to near infrared (NIR) band is sensitive to illumination
conditions [26]. The NIR band is more affected by multiple scattering than the red band, and
CSRS does not consider multiple scattering. Therefore, in this study, the reflectance of Band
4 (red, center wavelength of 665 nm, spatial resolution of 10 m) of Sentinel-2 was simulated.
The images used to calculate the relative reflectance were determined after investigating
the SZA, which causes significant differences in reflectance due to canopy shape.

Figure 2 shows the satellite overpass times for Sentinel-2A and B in the target region
for 2019, and the SZA and Sun Azimuth Angle (SAA) at the time of satellite overpass.
Satellite images were obtained using Google Earth engine, and metadata were referenced
to plot the time of overpass, SZA and SAA. Sentinel-2A and Sentinel-2B acquired 38 and
37 images, respectively.
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Figure 2. Sentinel-2A/B local overpass time in 2019 (left) and Sun zenith angle and Sun azimuth
angle during the time of Sentinel-2A/B overpass in the target area (right).

2.3. Research Flow

The overall flowchart of this study is shown in Figure 3. First, several virtual forests
were created in step 1. Parameters other than canopy shape (e.g., TH and CC) were obtained
from point clouds acquired by UAV-SfM. The canopy shapes used were cylinder, ellipsoid,
half ellipsoid, and inverted half ellipsoid, as shown in Figure 4. The tree model parameters
TH, canopy length (CL), canopy radius (CR) and diameter at breast height (DBH) were
also referenced to the UAV-SfM results. We used Phantom 4 for UAV observation and
flight condition, as shown in Table 1. Details on the parameters used for the virtual forests
can be found in Section 2.5. In Step 2, CSRS was used to simulate the reflectance of each
virtual forest under several SZA conditions. The aim of the step 2 was to analyze the
effect of canopy shape on simulated reflectance and to determine the SZA to be employed
when finding the optimal canopy shape in the next step. Therefore, the analysis in step
2 could not be performed using a specific satellite image. Then, we used the 10◦, 20◦,
30◦, and 40◦ SZAs in this step based on the SZAs checked in Section 2.2 for satellite
overpasses over a one-year period. For the SAA, we assumed that the effect of the SAA
was less and set it to 0◦ because of the symmetrical canopy shape. The description of
CSRS is in Section 2.4, and the detail simulation conditions are described in Section 2.5.
To investigate the significant difference between each simulated reflectance, we applied
Tukey’s honestly significant difference (HSD) test. After that, in step 3, the optimal canopy
shape for estimating the shadow fraction was determined. We determined the optimal
canopy shape by minimizing the discrepancy between the simulated reflectance from the
virtual forest and the reflectance observed by satellite sensor. Based on the results of step 2,
Sentinel-2 images were selected that satisfy the SZA, which causes significant differences
among canopy shapes in reflectance. Finally, the shadow fractions calculated from virtual
forests were compared with those calculated from the 3D model acquired by UAV-SfM in
target forest.

Table 1. Specifications of the UAV and flight conditions.

Specification and Parameters Value

Date 30 September 2018
Average Ground Sampling Distance 4.5 cm

Flight elevation 80 m
Number of images 806

Type of sensor onboard the UAV Optical
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Figure 3. Overall flowchart of this study.
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Figure 4. Canopy shapes used for the virtual forest. The canopy structures are tree height (TH),
canopy length (CL), canopy radius (CR) and diameter at breast height (DBH).

2.4. Description of Canopy-Level Shadow and Reflectance Simulator

Various simulation models have been developed to understand the relationships
between the reflectance which the satellite sensor observes and forest structures (e.g., the
Discrete Anisotropic Radiative Transfer Model (DART) [27], Forest Light Environmental
Simulator (FLiES) [28], and Radiosity–Graphics combined Method (RGM) [29]). While the
accuracy of simulated reflectance obtained from those simulators is high, it is necessary to
provide parameters obtained through field measurements. The simulator required in this
study considers the shadow fraction caused by canopy shapes of the virtual forest. Then,
we focused on the simulation model which uses shadows caused by trees as the shielding
ratios of direct and diffuse solar irradiance reaching the forest developed by Fujiwara and
Takeuchi (2021) [23]. Therefore, we developed CSRS (https://github.com/Takumi-Fuji693
6/CSRS.git, accessed on 29 June 2022), which incorporates that simulation model into a
virtual forest. CSRS has the following three advantages. (1) The canopy shape can be freely
changed as long as it is geometrically representable, (2) compared to existing simulators,
CSRS requires fewer parameters, and (3) the irradiance reaching the virtual forest at an
arbitrary point in time can be calculated at the voxel level by considering the shadows of
the trees.

The scale of the virtual forest was 50 m × 50 m, as shown in Figure 5. Individual
trees in the virtual forest were represented by voxel models with a size of 0.5 m. After the
virtual forest’s creation, Cast Shadow (CS) and Self Cast Shadow (SCS), which correspond
to the shielding ratios of direct and diffuse solar irradiance, were calculated for each
voxel. The details on the calculation methods of CS and SCS can be found in Fujiwara and
Takeuchi [30]. Reflectance was then calculated for each voxel according to Equations (1)–(3).
Since the lateral boundaries of the forest scene were not taken into account, voxels within a
central 40 m × 40 m area were used for computing reflectance. With a target pixel size of
10 m, 16 pixels could be obtained from a single forest scene. In this study, three virtual forest
scenes were created by changing the tree positions randomly, so 48 pixels of reflectance
were calculated per canopy shape.

I(λ) = {Fdir(λ)(1− CS) + Fdi f (λ)(1− SCS)}ρ(λ)

π
(1)

Isensor(λ) =

∫
I(λ)SRF(λ)dλ∫

SRF(λ)dλ
(2)

r(λ) =
π Isensor

Fdir(λ) + Fdi f (λ)
(3)

where I(λ) is radiance from a voxel considering CS and SCS (W/m2/sr/µm); λ is the
wavelength; Fdir(λ) is direct horizontal irradiance (W/m2/µm); Fdi f (λ) is diffuse horizontal

https://github.com/Takumi-Fuji6936/CSRS.git
https://github.com/Takumi-Fuji6936/CSRS.git
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irradiance (W/m2/µm); ρ(λ) is spectral reflectance of the over- and understory; Isensor(λ)
is radiance which the sensor observes (W/m2/sr/µm); SRF(λ) is the spectral response
function of the target sensor; r(λ) is reflectance observed by the satellite.

Figure 5. Schematic illustration of the virtual forest scene.

2.5. Forest Scene and Parameters

Table 2 shows the parameter list of CSRS in reflectance simulation. Slope, TH, CC, CR,
CL and DBH were obtained from the UAV-SfM [23]. Four patterns of virtual forests were
created, along with four different canopy shapes. The Simple Model of the Atmospheric
Radiative Transfer of Sunshine (SMARTS) code, version 2.9.5. [31], was employed to
calculate the direct and diffuse irradiance. The spectral reflectance data of overstory and
understory were selected among tree species which are found in Southeast Asia from
ECOSTRESS Spectral Library (version 1.0) (https://speclib.jpl.nasa.gov, accessed on 15
May 2022). Reflectance data of Prosopis articulata from tropical South Asia were used for
overstory reflectance, and data from a grass species (Avena fatua) were used for forest floor
reflectance. The wavelength interval was 1 nm. SZA was changed from 0◦ to 40◦ in a 10◦

increment, and SAA was set to 0◦.

Table 2. Characteristics of the forest scenes and optical parameters used in the simulation.

Parameter Value

Slope (degree) 0◦

TH X ~N (16, 22)
Canopy shape 4 pattern (shown in Figure 4)

CC (%) 80%
CR (m) X ~N (7.3, 1.72)
CL (m) Half of TH

DBH (m) 0.3
Overstory reflectance Prospis articulata

Understory reflectance Avena fatua
Sun Zenith Angle 10◦, 20◦, 30◦, 40◦

Sun Azimuth Angle 0◦

https://speclib.jpl.nasa.gov
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2.6. Performance Assessment of Estimated Reflectance and Shadow Fraction

The assessment of error using relative reflectance was evaluated by root mean square
error (RMSE) of the reflectance for the two seasons obtained from Sentinel-2 and CSRS,
respectively, as shown in Equation (4). Based on the results of step 2, images for the two
seasons were selected.

To evaluate the shadow fraction estimated by CSRS, we compared it with one cal-
culated from the voxel model based on the point cloud data obtained by UAV-SfM. The
shadow fraction was calculated under solar geometry conditions at 8:00, 10:00, 12:00, 14:00
and 16:00 on UAV observation date (30 September 2018). The corresponding solar geometry
is listed in Table 3. In addition, we calculated the RMSE (Equation (5)) to evaluate the
performance of the simulated shadow fraction from the virtual forest.

RMSEre f lectance =

√(
ρsatellite(season1)

ρsatellite(season2)
− ρsimulation(season1)

ρsimulation(season2)

)2

(4)

where RMSEre f lectance is the RMSE of relative reflectance between Sentinel-2 and simulation;
ρsatellite(season i) is average reflectance from Sentinel-2 at season i; ρsimulation(season i) is the
simulated reflectance at season i.

MAEshadow =

√√√√1
5

5

∑
i=1

(Shadow3dmodel(i)− Shadowsimulation(i))2 (5)

where RMSEshadow is the RMSE between shadow fraction calculated from the 3D model
obtained from UAV-SfM and simulation.

Table 3. Solar geometric conditions for estimating shadow fraction.

Time SAA (◦) SZA (◦)

08:00 98 61
10:00 115 33
12:00 181 16
13:00 244 34
14:00 261 62

3. Results
3.1. Reflectance Simulation under Several SZA

Firstly, the effect of SZA was investigated on each canopy shape. Figure 6 plots the
relative changes in reflectance at 20◦, 30◦, and 40◦ SZA for each canopy shape, based
on reflectance at 10◦ SZA. For cylinders and inverted half ellipsoids, relative reflectance
decreased to 0.9 when SZA increased from 10◦ to 20◦; however, when SZA increased from
20◦ to 40◦, the values were almost 0.9. For ellipsoid, relative reflectance decreased to 0.8
when SZA increased from 10◦ to 20◦, but even when SZA increased from 20° to 40◦, the
mean values did not change. For the half ellipsoid, relative reflectance decreased to 0.8
when SZA increased from 10◦ to 20◦, and when SZA increased 20◦ to 40◦, the values
decreased to 0.7.

Secondly, the effect of canopy shape on the same SZA was investigated. Figure 7
shows the reflectance simulation results for the same SZA with different canopy shapes.
As shown in Figure 7, when SZA is 10◦ to, the simulated reflectances of the four canopy
geometries are almost the same. When SZA is greater than 20◦ to, the cylinder and the
inverted half ellipsoid have almost the same reflectance and higher reflectance than the
other two. It also shows that the ellipsoid is higher in reflectance than the half ellipsoid.
Table 4 shows the results of multiple comparisons by Tukey’s HSD test on the results. The
p value was set to 0.05. No significant difference in reflectance obtained from each canopy
shape was observed when SZA was 10◦ to, but when SZA was greater than 10◦ to, the
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differences in reflectance among canopy shapes became larger. However, as mentioned
above, no significant difference was observed between the canopy shapes of the cylinder
and the inverted half ellipsoid.

Table 4. Multiple comparisons using Tukey’s HSD test for reflectance simulation results for different
canopy shapes in each SZA (C: cylinder, E: ellipsoid, HE: half ellipsoid and IHE: inverted half
ellipsoid). p value is 0.05.

SZA (Degree) Group1 Group2 Meandiff p-adj Lower Upper Reject

10

C E 0.0002 0.9 −0.0019 0.0023 False
C HE 0.0 0.9 −0.0021 0.0021 False
C IHE −0.0 0.9 −0.0021 0.002 False
E HE −0.0002 0.9 −0.0023 0.0019 False
E IHE −0.0002 0.9 −0.0023 0.0019 False

HE IHE −0.0 0.9 −0.0021 0.002 False

20

C E −0.0015 0.0056 −0.0026 −0.0003 True
C HE −0.0024 0.001 −0.0035 −0.0012 True
C IHE −0.0 0.9 −0.0012 0.0011 False
E HE −0.0009 0.1661 −0.002 0.0002 False
E IHE 0.0014 0.008 0.0003 0.0025 True

HE IHE 0.0023 0.001 0.0012 0.0034 True

30

C E −0.0018 0.0212 −0.0034 −0.0002 True
C HE −0.0036 0.001 −0.0053 −0.002 True
C IHE 0.0 0.9 −0.0016 0.0016 False
E HE −0.0018 0.0191 −0.0034 −0.0002 True
E IHE 0.0018 0.0181 0.0002 0.0035 True

HE IHE 0.0037 0.001 0.0021 0.0053 True

40

C E −0.0026 0.0153 −0.0049 −0.0004 True
C HE −0.0057 0.001 −0.008 −0.0035 True
C IHE 0.0007 0.8461 −0.0016 0.0029 False
E HE −0.0031 0.0027 −0.0054 −0.0008 True
E IHE 0.0033 0.0011 0.0011 0.0056 True

HE IHE 0.0064 0.001 0.0041 0.0087 True

Figure 6. Relative reflectance simulated at SZA from 10◦ to 40◦ for each tree canopy shape. Base
reflectance is mean reflectance at SZA 10◦ for each canopy shape.
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Figure 7. Reflectance simulation results for the same SZA with different canopy shapes. X-axis is
SZA and y-axis is reflectance.

3.2. Determination of Optimal Canopy Shape and Comparison of Shadow Fraction

Based on the results in Section 3.1, Sentinel-2 images from the two seasons with SZA
close to 20◦ and 40◦, shown in Table 5, were employed in the simulations. Due to the
availability of Sentinel-2 BOA products beginning at the end of 2019 in the target area and
cloud contamination, images in 2019 and 2020 were used. The relative reflectance was
calculated using the average of the reflectance for each of Season 1 and Season 2. Note that
because non-forest pixels, such as those for buildings, exist in the target forest, as shown in
Figure 1, 40 forest pixels were sampled visually.

Table 5. Date of Sentinel-2 image acquisition and Sun geometry conditions (Sun azimuth angle (SAA)
and Sun zenith angle (SZA)).

Season Date SAA (◦) SZA (◦)

1

13 April 2019 108.7 21.3
28 April 2019 129.9 22.4
12 April 2020 108.9 21.4
22 April 2020 100.0 19.7
7 May 2020 86.3 18.5

2

9 December 2019 155.1 43.3
14 December 2019 154.7 43.9
24 December 2019 153.4 44.6
13 December 2020 154.7 43.9
28 December 2020 152.6 44.7

Table 6 shows the RMSE of the Sentinel-2 Band 4 reflectance simulated and the simu-
lated shadow fraction. The shadow fraction calculated from the voxel model based on the
point cloud acquired by UAV-SfM was used for the comparison of shadow fractions. The
canopy shape that had the lowest RMSE in both reflectance and shadow simulations was
the half ellipsoid. The use of a canopy shape with a large error in the reflectance simulation
also resulted in a larger error in the shadow fraction. The shadow fraction simulation
shows that the RMSE differs by about 10% between canopy shapes with rounded (ellipsoid
and half ellipsoid) and flat (cylinder and inverted half ellipsoid) tops.
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Table 6. RMSE of Sentinel-2 Band 4 reflectance simulation and shadow simulation in each canopy
shape (C: cylinder, E: ellipsoid, HE: half ellipsoid and IHE: inverted half ellipsoid).

Canopy Shape
RMSE

Reflectance Simulation Shadow Simulation

C 0.542 0.125
E 0.456 0.035

HE 0.385 0.032
IHE 0.537 0.129

4. Discussion
4.1. The Effect of Canopy Shape on Reflectance Simulation

Considering the potential role of canopy shape in estimating reflectance and shadow
fraction, it is crucial to quantify its effects, and therefore improve the simulation. The opti-
mal canopy shape was determined by comparing the simulated reflectance with satellite-
based reflectance, which enabled estimating the canopy shape without field measurements.
This was the first study to conduct an analysis of canopy shape in a reflectance simulation.
Based on the results of the analysis, we could choose the SZA when the canopy shape had
the most significant effect on the reflectance simulation, namely, the SZA of 40◦. At 40◦

SZA, the reflectance simulation varied distinctly with different canopy shapes and could
therefore be used to determine the optimal combination. In addition, this method is flexible
and can be applied to various forests by adjusting the parameters. The slope is also in the
parameters, so forests in mountainous areas can also be represented.

The results in Table 6 showed that the optimal canopy shape that had the least RMSE
(0.385) in the reflectance simulation also had the lowest RMSE (0.032) in the shadow
fraction estimation. Additionally, canopy shapes with larger RMSE in the reflectance
simulation had larger RMSE in the shadow simulation. These findings emphasize that
the results of reflectance simulations using CSRS are effective for estimating the shadow
fraction. Therefore, it is possible to determine the optimal canopy shape by simulating the
reflectance using a virtual forest, and then applying it in estimating the shadow fraction.

Furthermore, relative reflectance calculated based on the images from two seasons
was adopted instead of using absolute reflectance. In absolute reflectance, if the spectral
reflectance of each overstory or understory given to the CSRS differs from the actual one,
the error becomes larger. With relative reflectance, on the other hand, the effects of canopy
shape and SZA are larger than those effects; this helped us with obtaining optimal canopy
shape. Although the UAV-SfM results were used to determine parameters other than
canopy shape in this study, satellite-based forest structure products or allometric equations
for representative tree species contribute to not using field measurements. To extend the
method greatly, it will be necessary to simulate various forest structures and create look-up
tables for Sentinel-2 reflectance and canopy shape. This will enable estimation of shadow
fraction at arbitrary locations, which is expected to further improve the accuracy of GPP
estimation in the future. In addition, a trait-based approach using remote sensing data
has recently been developed [32]. This approach is limited in coverage because the forest
structure is obtained by the Airborne Laser Scanner, but it is expected that the method
could be extended to a wider area by combining it with CSRS.

4.2. Limitations and Uncertainties of Reflectance Simulation

Despite the encouraging results of the proposed method in this study, there are still
some limitations that should be addressed. Firstly, forest phenology could affect the
reflectance simulation and shadow fraction estimation. In this study, we assumed that
the phenology of tropical rainforest would not experience much change. Figure 8 shows
the time series of Normalized Difference Vegetation Index (NDVI) in the target area using
Sentinel-2 images between January 2019 and December 2020. The NDVI values were
calculated from the same 40 pixels described in Section 3.2. As shown in Figure 8, the
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average of the NDVI shows a minimum in April at 0.7 and a maximum in October at
0.85, indicating that it fluctuates by about 0.15 throughout the year. Although NDVI is
affected by many other environmental factors, such as shadows [33] and the water content
of leaves [34], there is still a slight change in the phenology. Consequently, the use of
relative reflectance could be affected by phenology, making it difficult to apply this method
to forests with noticeable phenological variation. Secondly, there is uncertainty in the
creation of virtual forests. Allometric equations were used to create the virtual forest, and
growth of the canopy was assumed to be orthotropic. However, canopy shyness is an
important factor for canopy closure [35–37]. Therefore, there may be differences between
the actual forested landscape and the virtual forest.

Figure 8. Time series of NDVI in 2019 and 2020. The red line represents the mean value (50th
percentile), the upper blue dashed line represents the 84th percentile and the lower blue dashed line
the 16th percentile.

4.3. Future Work

The proposed method can be expected to be applicable to evergreen broadleaf forests
(EBF) with little phenological variation. Although EBF accounts for 48% of the world’s
forests [38], this study applied the proposed method to these forests with limited conditions.
Characteristics of forests where the method is difficult to apply are having prominent tall
trees, such as those found in natural forests, and sparsity of trees. The heights of trees in
the virtual forests were assumed to follow a normal distribution, but the probability of
generating a tree with a prominent height is low. In addition, since the CC was set to 80%,
the reflectance of the canopy (leaves) had a large influence on the reflectance simulation.
In sparse forests, on the other hand, the soil and forest floor have a greater influence.
Therefore, it is necessary to further validate the effectiveness of CSRS in various forests.

Although only Sentinel-2 was targeted in this study, it is expected that the method
could be applied to Landsat as well. It is recommended that the number of available
satellite images increase, especially in areas where tropical rainforests are located, because
the images are contaminated by clouds. However, when targeting satellite imagery coarser
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than the spatial resolution of Sentinel-2 and Landsat sensors, e.g., MODIS, there may be
multiple canopy shapes within a pixel. It is necessary to simulate a virtual forest with
multiple canopy shapes within a pixel.

Furthermore, boreal forest is second only to tropical forest in terms of the proportion
of forest area, at 27.3% [1]. Moreover, it is very sensitive to the effects of climate change,
and therefore, the GPP of boreal forest should be estimated with high accuracy. However,
the canopy shape of boreal forest is asymmetrical, which is called tropism. Kobayashi et al.
(2010) [16] suggested that the diversity of canopy shape, such as asymmetry, should be
considered when creating virtual forests for boreal forests. Therefore, it is important to
improve the CSRS by considering the asymmetric canopy shape, which could be more
responsive to real forests and contribute to the shadow fraction estimation.

5. Conclusions

In conclusion, in this study, we analyzed the effect of canopy shape on simulating
reflectance and estimated the optimal canopy shape using CSRS in the tropical rainforest—
both firsts. The effect of canopy shape was negligible when SZA was 10◦, but it increased
with the increase in SZA. It is worth noting that the cylinders with flat canopy tops and
inverted half ellipsoids showed similar reflectance. The reflectance of the half ellipsoid
was lower than that of the ellipsoid, indicating the influence of shadows caused by the
rounded lower part of the canopy. To determine the optimal canopy shape, we compared
the reflectance of Sentinel-2 with the reflectance simulated from a virtual forest and found
that the half ellipsoid performed the best, having the lowest RMSE, and this canopy shape
showed the best results when estimating the shadow fraction. To improve the accuracy
of the estimation in the future, it will be necessary to reduce the uncertainty caused by
phenology, simulation models and virtual forest creation.
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