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Building footprint extraction in Yangon city from
monocular optical satellite image using deep learning
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ABSTRACT
In this research, building footprints in Yangon City, Myanmar are
extracted only from monocular optical satellite image by using
conditional generative adversarial network (CGAN). Both training
dataset and validating dataset are created from GeoEYE image of
Dagon Township in Yangon City. Eight training models are cre-
ated according to the change of values in three training parame-
ters; learning rate, b1 term of Adam, and number of filters in the
first convolution layer of the generator and the discriminator. The
images of the validating dataset are divided into four image
groups; trees, buildings, mixed trees and buildings, and pagodas.
The output images of eight trained models are transformed to
the vector images and then evaluated by comparing with manu-
ally digitized polygons using completeness, correctness and F1
measure. According to the results, by using CGAN, building foot-
prints can be extracted up to 71% of completeness, 81% of cor-
rectness and 69% of F1 score from only monocular optical
satellite image.
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1. Introduction

According to the UN’s report in 2014, 54% of world’s population lived in the urban area
(United Nations 2014). Yangon is the former capital of Myanmar, one of the developing
countries in the world, whose urban area increased seven times from 1973 to 2015 in
42 years (Sritarapipat and Takeuchi 2018) and Myanmar population also increased 2.5
times from 1973 to 2014 (Ministry of Immigration and Population 2015). Although the
urban area and urban population are growing, urban central functions are still in central
business district with a population density of 365.5 persons/ha (Japan International
Cooperation Agency (JICA) 2013). Urban building maps are one of the most important
database for further urban related applications such as urban planning, urban manage-
ment, natural resource management and so on for Yangon City. As of Japan International
Cooperation Agency (JICA) (2018), there are 18 ongoing projects in Yangon region and
its environment, all of which are in collaboration with Japan International Cooperation
Agency (JICA) and other government institutions such as Yangon City Development
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Center (YCDC). These projects include mapping, improving transportation service and
water supply management. Current urban building mapping project of Yangon city is
mainly based on manual digitization of very high resolution (VHR) satellite image.
Manual digitization gives better accuracy but takes a lot more time and human resources,
and are more difficult for future updates. Thus, automatic digitization which is based on
image processing techniques, machine learning and deep learning algorithms, is
more preferable.

Several research works which are based on image processing techniques are as follows.
In Yanfeng Wei (2004), urban building footprints extraction was done from high reso-
lution panchromatic satellite image from QuickBird based on unsupervised clustering and
Canny edge detection. In their work, shadow was one of the information sources for
investigation of building presence. In Liu and Prinet (2005), QuickBird satellite image and
probability model was used to detect building footprints. Segmentation for possible build-
ing candidates was the first step and using probability model to select true buildings was
the second step. In Sirmacek and Unsalan (2008), building detection was done from aerial
images. They also used segmentation by invariant colour features and edge detection for
building extraction. In Akçay and Aksoy (2010), Ikonos image was used to detect building
by using segmentation and clustering based on minimum spanning trees using shadow
and sun azimuth angle information. In Gurshamnjot Singh et al. (2015), building extrac-
tion was done only from single satellite image based on shadow information. Building
length was calculated from shadow information along with sun azimuth information after
segmentation of the satellite image. Graphical based pruning method was used to elimin-
ate overlapped extraction of the same building. In Ok et al. (2013), arbitrarily shaped
buildings were detected by fuzzy landscape generation approach based on shadow regions
to generate possible building regions, and GrabCut partitioning to extract building
regions. The authors tested on QuickBird and GeoEYE-1 images. The work of Ghaffarian
and Ghaffarian (2014) was the combination of Purposive FastICA(PFICA) and binary k-
means clustering. Monocular high resolution Google Earth images were used for building
detection. The original FastICA was improved by initializing with the Moore-Penrose
pseudo-inverse matrix for three regions, shadow and dark vegetation, roads and bare soil
and buildings. The image was masked using those three regions and the masked images
were then implemented by PFICA algorithm and finally clustered by using binary k-
means clustering. In Ghaffarian and Ghaffarian (2014), shadow detection based on novel
double thresholding technique was implemented on high resolution Google Earth images.
Then, those shadow areas along with the illumination angle were used to automatically
create buffer zone based on shadow shapes and sizes. Supervised parallelpiped classifica-
tion which contains a new proposed thresholding method based on standard deviation of
the classes was used to detect building areas and the training samples were collected from
shadow pixels.

In Lopez et al. (2015), image segmentation was used to get segments of potential build-
ing regions and then classification with a threshold was used to classify the segments into
buildings. They used two software packages; eCognition and InterIMAGE. In Oztimur
Karadag et al. (2015), they proposed a domain-specific building segmentation which was
based on domain-specific information (DSI). In their work, the image dataset was first
segmented by domain-specific information and the image segments were fused based on
decision fusion. Their work needed multispectral satellite images. In Kabolizade et al.
(2010), building detection was based on digital surface model (DSM) and modified snake
model using colour aerial images and light detection and ranging (LiDAR) data. DSM
was used to detect initial building contour. In Koc-San and Turker (2012), the existing
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building database was automatically updated from IKONOS images. Support Vector
Machine (SVM) classification was used for determining building and non-building
patches. The input to SVM classification was the pan-sharpened satellite image which was
orthorectified by normalized digital surface model (nDSM). Normalized difference vegeta-
tion index (NDVI) was also used in determining potential building patches. During
update process using existing geographical information system (GIS) database, new,
destroyed and existing building patches were considered. Whilst updating new and exist-
ing building patches, a new building model based on shape parameters was used for the
comparison of detected building patches and existing building database, and any changes
are updated to the existing database. Those research works were based on image process-
ing techniques, and using image processing techniques for building extraction can auto-
mate the extraction process. But it requires multiple different datasets such as optical
datasets and LiDAR datasets, and multiple algorithms have to be combined together
which requires expert knowledge.

Using deep learning algorithms can reduce the requirement of different datasets
(optical image, LiDAR image, etc.) and algorithms than using image processing techni-
ques and machine learning algorithms. In Vakalopoulou et al. (2015), they used deep con-
volutional neural network to extract building footprints from very high resolution
multispectral data. They used ImageNet to extract deep features of buildings and used
them to train SVM classifier. Then, the buildings were finally extracted through a Markov
random field (MRF)-based model. In Zhang et al. (2016), they first used multi-scale sali-
ency computation to extract the area which are covered with buildings. And then they
used R-CNN to extract building footprints. They finally used an improved non-maximum
suppression (NMS) method to improve the results. In Zuming Huang et al. (2016), they
used deep deconvolution neural networks (DeconvNet)-based building extraction method.
In their work, they used two datasets to train the neural network as well as saliency map
fusion to improve the result. In Chen et al. (2017), building extraction was performed by
using deep deconvolutional neural network. They used two datasets from ISPRS 2D
Semantic Labelling Challenge which contained near-red, red and green bands with DSM.
In Bittner et al. (2018), VHR remote sensing images combined with normalized DSMs
were used for building footprint extraction. They used fully convolutional network (FCN)
for building detection from RGB image, panchromatic (PAN) image and nDSM images.
In those building footprint extraction tasks, the training image includes multiple bands
such as red, green and blue (RGB) bands, and infrared (IR) band. IR band is very useful
for vegetation detection in urban and suburban regions, as in those regions, buildings are
surrounded or sometimes partially occluded by trees. However, VHR satellite images with
IR band are more expensive than RGB images. Moreover, they used deep learning algo-
rithms which are based on convolutional neural network (CNN) which requires a lot of
training samples.

In Yang et al. (2018), four CNN architectures were tested for building extraction at
large scale for United States. Branch-out CNN, fully convolutional network (FCN), condi-
tional random field as recurrent neural network (CRFasRNN), and SegNet were used for
semantic pixel-wise labelling for building footprints. The datasets contain 1 m spatial
resolution images with red, green, blue and near infrared bands. The training dataset con-
tains 4000 images that were selected across the country. In Yang et al. (2018), Dense
Networks (DenseNets) were combined with an attention mechanism to improve the
extraction performance. DenseNets contain dense blocks which are iterative concatenation
of their previous feature maps. Thus, they improve feature reuse between each feature
map, and reduce the number of parameters. The attention mechanism was used to extract
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the most useful information of the input image. They used very high resolution true
orthophoto (TOP) images with a resolution of 5 cm from the ISPRS 2D semantic labelling
contest (Potsdam). In Xu et al. (2018), the deep learning model ResNet was combined
with hand-crafted feature engineering as pre-processing and a guided filter as post proc-
essing to improve the classification result. They also used ISPRS 2D semantic labelling
contest datasets (Vaihingen and Potsdam) which contain RGB and near IR bands, and
they also used NDVI to identify vegetation area in pre-processing. The guided filter was
used to smoothen the extracted building edges. Those research works developed or modi-
fied existing state-of-the-art deep learning algorithms to get better performance. The algo-
rithms are based on CNNs and they used thousands of training samples. The trained
deep learning models were tested on the validating datasets which were apparently from
the same area with the training images.

Automatic building extraction based on image processing techniques requires multiple
datasets and multiple algorithms have to be combined together which can make the
extraction process more complicated and longer. Machine learning algorithms require
fewer steps but expert knowledge for feature engineering is the most important part.
Deep learning algorithms give better accuracy but require a lot more training samples
than machine learning algorithms. Automatic digitization requires very high resolution
satellite image, and they are expensive. Thus, feasibility of training data is one of the
important issues for applications of deep learning in building footprint extraction. Other
research works used deep learning algorithms that are based on CNN. Training CNN-
based algorithms demand a lot of labelled data. And our previous works (Hein Thura
Aung et al. 2018a, 2018b) indicate that validation on the images of the study area after
being trained with images of external open source training datasets from different loca-
tions cannot get as good extraction results as using the training images from the same
study area. This is because the nature of buildings in Yangon City, roof colours, building
shapes, etc. are different from those in external training datasets. Thus, it is very import-
ant to find the balance between minimum number of training images and optimum
extraction results. Conditional generative adversarial networks (CGANs) are based on
unsupervised learning, and they have two neural nets trying to fool each other; the gener-
ator and the discriminator (Mirza and Osindero 2014). The generator can generate fake
samples and the discriminator distinguishes them whether they are fake or real. If the dis-
criminator can catch fake samples, the generator tries to generate the samples that look
more real. In this way, both the discriminator and the generator can learn features from
the inputs. Those CGANs are therefore more suitable for remote sensing applications
where availability of training samples is very limited. Thus, pix2pix which is based on
CGAN is chosen for building footprint extraction.

Evaluation methods are also very important as they indicate how well an algorithm
can do the extraction task. Evaluation can be based on either pixel-based evaluation or
object-based evaluation. Pixel-based evaluation is more objective as it considers based on
the status of every pixel of which class it belongs to (Zerrouki and Bouchaffra, 2014).
However, object-based evaluation is more appropriate if spatial information, shape and
texture, etc., is to be considered. In building footprint extraction tasks, both pixel-based
and object-based evaluation are used. Some building footprint extraction tasks as in
Kabolizade et al. (2010), Koc-San and Turker (2012) and Vakalopoulou et al. (2015) were
based on image segmentation, and they considered spatial information. Such kinds of sys-
tem used object-based evaluation. However, as deep learning algorithms consider both
low-level features such as lines and dots, and high-level features such as shape, both
pixel-based and object-based evaluation were used in those above research works.
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As Yangon is the largest city in Myanmar and still under development, it is very
important to have a reliable building map which can serve as a base map for further
urban related applications. Current building footprint extraction is based on manual digit-
ization which requires a lot of time and human resources. This research is part of Science
and Technology Research Partnership for Sustainable Development (SATREPS Project)
which is the collaboration between University of Tokyo, Japan and Yangon Technological
University and other government organizations in Myanmar (‘Development of a
Comprehensive Disaster Resilience System and Collaboration Platform in Myanmar j
SATREPS (Science and Technology Research Partnership for Sustainable Development)’,
n.d.). The project area is Yangon and Bago region where a comprehensive disaster resili-
ence system will be established through disaster risk assessment and preparation. In other
research works, deep learning algorithms were trained on thousands of labelled data, and
multiple spectral bands, RGB and near, IR etc. However, this research focuses on auto-
matic building footprint extraction in Yangon City with minimum requirement of spectral
bands and dataset. The buildings in Yangon City have very different spatial properties
and spectral reflectance from those images in freely available datasets. As a result, only
monocular optical RGB satellite image of the study area from GeoEYE satellite is used for
both training and validating, and training parameters are well tuned in order to get max-
imum extraction performance with minimum number of training images in the dataset.
Pix2pix (Isola et al. 2017) is the deep learning algorithm that is used for building foot-
print extraction. The objectives of this research work are

� to create an automatic building extraction system for creation of Yangon map,
� to reduce the requirement of different algorithms and datasets for building extrac-

tion, and
� to investigate the effects of parameters in pix2pix to its performance.

2. Methodology

Figure 1 shows building footprint extraction system using Conditional Generative
Adversarial Network (CGAN) with pix2pix. First, the satellite image of the study area is
manually digitized in order to create a vector image of the area. Both raster and vector
images are then sliced into multiple images and combined together in order to create
training dataset and validating dataset. Then, the pix2pix is trained with the training data-
set. After that, the trained pix2pix model will be validated by using the validating dataset.
Before the evaluation process, the output images from the validation process are trans-
formed into vector images, and then evaluated by using the manually digitized polygons.

Figure 1. Building footprint extraction system.
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2.1. Conditional generative adversarial network (CGAN) with pix2pix

In this building footprint extraction system, pix2pix is the deep learning algorithm that is
going to be used. It is based on conditional generative adversarial network (CGAN) (Isola
et al. 2017). The CGANs are based on generative adversarial network (GAN). The CGAN
also consists of two neural networks; the generator and the discriminator which perform
the same tasks with those in GAN. Based on the loss from the discriminator, the gener-
ator generates better samples and tries to make fool the discriminator.

In CGAN, both the generator and the discriminator are conditioned on additional
input which can be a class label (Mirza and Osindero 2014). The CGANs are trained
according to the objective function shown in Equation (1):

minG maxD V G,Dð Þ ¼ Ex�PdataðxÞ log D xjy� �� �� �þ Ex�PzðxÞ log 1�DðG zjy� �Þ� �� �
(1)

E represents the expectation. PdataðxÞ is the distribution of sample x and PzðxÞ is the
distribution of z: DðxjyÞ is the probability of x sampled from the real data. GðzjyÞ repre-
sents the sample generated from z: ‘y’ represents the additional input that is used to con-
dition the generator and the discriminator. The first term of Equation (1) is the
expectation of the probability that the sample is real and the second term refers to the
expectation of the probability that the sample comes from the generator. The discrimin-
ator has to distinguish the sample correctly so it has to maximize the function whereas
the generator has to fool the discriminator so it has to minimize the first term of
Equation (1).

2.2. Study area

The study area is the Dagon Township in Yangon City, Myanmar located between
16�48017:575200N and 16�46

0
916000N, and 96�070550400E and 96�090842300E: Monocular

GeoEYE optical RGB image with 0.5 m spatial resolution is used for both training and
validating. The original satellite image has the dimension of 5869 � 5248 and is sliced
into 329 images of 256� 256 pixels, all of which cover around 5.4 km2. The sliced images
are randomly chosen for the training dataset that includes 264 sliced images which covers
about 4.3 km2 (80% of total area) and the validating dataset that includes 65 images which
covers around 1.1 km2 (20% of total area) by using the split function in pix2pix.

In Hein Thura Aung et al. (2018a), the images from Google Map were used for train-
ing and the images of the study area were used for validating. In that work, the training
images have 1 m spatial resolution, and the image location is New York City (affinelayer
2017), however the validating images have 0.5 m spatial resolution which was taken over
Yangon City. According to the results of that work, as the spatial properties and spectral
reflectance of training images are different from those of the validating images, the extrac-
tion results are poor. In Hein Thura Aung et al. (2018b), two training datasets were used;
one of which contain 1850 images of New York from Google Map, and the other contains
265 images from the study area. In that research work, two validated results were com-
pared, and the pix2pix trained with images from the study area had better performance in
terms of F1 score although it was trained with only much fewer images. So, in this work,
both training and validating datasets are created with the images of the study area.

Depending on the visualization, the images in the validating dataset are considered in
four different types for evaluation;

Trees: images mostly covered with trees (23 images)

Buildings: images mostly covered with buildings (4 images)
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Mixed: images evenly covered with trees and buildings (32 images)

Pagodas: images with pagodas (6 images)

Pagodas are usually golden structures with open space floors covered with white cer-
amic tiles. They have different spectral properties from other types of buildings and are
found all over Yangon City and the country. Only the golden structures are regarded as
building footprint areas and white ceramic floors are regarded as non-building footprint
areas. In this research work, they are considered as one type of buildings. Amongst those
four types, ‘Buildings’ and ‘Mixed’ types are considered as the most important ones
because this research work aims to automate or speed up building footprint delineation
process, and these two types are most commonly found in urban or suburban areas of
Yangon city. Figure 2 shows sample images in validating dataset.

Figure 2. Example images of validating dataset: (a) Trees, (b) Buildings, (c) Mixed, (d) Pagodas.
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2.3. Choosing training parameters

Training pix2pix is done using the workstation with NVIDIA Geforce GTX 1080 GPU,
Ubuntu 18.04 and Python 3.6 and the tensorflow version of pix2pix is used. In Hein
Thura Aung et al. (2018a), pix2pix was trained with different number of epochs and dif-
ferent training images from Google Map satellite images. Then, it was evaluated with the
image of the study area. In Hein Thura Aung et al. (2018b), pix2pix was trained with two
different training datasets of two different locations; one with the image from New York
City and the other from the study area. The performance of two different trained pix2pix
was then compared. In this work, based on three training parameters of pix2pix; learning
rate (lr), beta 1(b1) momentum of Adam optimization algorithm in pix2pix and number
of filters in first convolution layer of the generator (NGF) and discriminator (NDF) of
pix2pix, eight different pix2pix models are proposed as shown in Table 1.

Learning rate is the size of the step that pix2pix takes to its parameters (Ian
Goodfellow et al. 2016) after each iteration. The usual way of finding appropriate learning
rate is to start with a higher value and then reduce until the most appropriate value is
obtained (Ian Goodfellow et al. 2016). The most appropriate learning rate gives minimum
training loss which in turn can give better representation results. Pix2pix uses Adam algo-
rithm which is adaptive learning rate optimization algorithm, and the default initial value
of learning rate for pix2pix is 0.0002. However, that value is the recommended value by
original researchers (Isola et al. 2017) for all image translation tasks. As building footprint
extraction is the only focus in this work, the learning rate is changed to the most appro-
priate value that can give minimum training loss for our application. If the learning rate
is too high, the training never gets to the minimum loss and oscillates. If the learning rate
is too low, the training time will take longer to get to the minimum training loss (Ian
Goodfellow et al. 2016).

Beta 1 (b1) is the momentum value used in Adam optimization algorithm in pix2pix.
Optimization is one of the most important parts in deep learning algorithms where the
parameter values in layers of deep neural network are updated according to the training
loss and gradient value in each epoch. During minimization of training loss, there can be
local minimum points before getting to the global minimum point. If the training is stuck
at local minimum points, it cannot go into any direction in order to reduce the loss.
Momentum is used to overcome this problem. During optimization, optimization algo-
rithms with momentum update the parameter values using not only the current gradient
value but also the previous gradient values by multiplying them with a scale factor and
adding to the current gradient value (Glassner n.d.). Thus, momentums smoothen and
accelerate training, and it is analogous to the ball rolling down the training loss curve. If
the momentum is too low, it cannot pass the local minimum point, but if it is too high, it
will also pass the global minimum point (Glassner n.d.).

Table 1. Eight pix2pix models with different training parameters.

Model name Epochs Learning rate b1 (Adam) NGF NDF

A1 150 0.0002 0.5 64 64
A2 150 0.0001 0.5 64 64
A3 150 0.00002 0.5 64 64
B1 150 0.0002 0.9 64 64
B2 150 0.0002 0.1 64 64
C1 100 0.00002 0.9 128 128
C2 100 0.00002 0.5 128 128
C3 100 0.00002 0.1 128 128
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Deep learning networks are composed of convolutional layers, and filters in each layer
are used for convolution of the input image during representation or training. The filters
are applied to the image by moving over the image, and specific features of the input
image are represented to the convolved map or feature map. Thus, filters are also called
feature detectors (Glassner n.d.). As layers are connected in deep learning networks, out-
puts of one filter set become inputs of another filter set, and complex features of the input
image are learnt in this way. The number of parameters in the network depends on the
number of filters being used. The more filters being used, the more parameters the net-
work will have, and the longer the training time will be. The values of the filters or fea-
ture detectors are automatically tuned through the learning process until the
representation matches with the target image with minimum loss. As pix2pix contains
two networks; the generator and the discriminator, the number of filters in the first con-
volution layer of both networks can be set.

In Table 1, for A1, A2 and A3, the values of b1, NGF and NDF are default setting val-
ues of pix2pix and the number of epochs is set as 150. In Hein Thura Aung et al.
(2018a), the number of epochs was adjusted, and how different number of epochs affect
the performance was investigated. According to those results, high number of epochs can
give more sharpness at building boundaries and more correct extraction results. However,
higher number of epochs will take longer training time, and if the training gets to the glo-
bal minimum point before finishing all number of epochs, subsequent training is useless.
And, if the number of epochs is low, the training will not get to the global minimum
point. Previous research works Hein Thura Aung et al. (2018a) also indicate if the num-
ber of epochs is too low, the building boundaries are not sharp enough, and if the epochs
is too high, the training time takes longer. So, in this research work, the appropriate
epoch value is checked by first initializing with an arbitrary number for example 100, and
monitoring the exponential training loss curve by using Tensorboard. If the training loss
curve still shows downward trend when the given epoch value is finished, that means
minimum training loss has not reached and number of epochs should be increased. For
those three models, only learning rate value is varied.

There are infinitely possible values for learning rate starting from the recommended
value for pix2pix, 0.0002. However, in this research work, only three values are chosen
based on visual monitoring of the curves of training loss by using Tensorboard in real
time. The learning rate values are the default value, 0.0001 which is slightly smaller value,
and 0.00002 which is one decimal digit smaller than the default value. If the learning rate
is too small, the curve of training loss goes down very slowly, and if the learning rate is
too large, it is very difficult to get to the minimum training loss. Choosing learning rate
value which is too low also takes more time to get to the minimum training loss (Ian
Goodfellow et al. 2016). Beta 1 (b1) is one of the two exponential decay rates for Adam
stochastic optimization algorithm in pix2pix and ranged from 0 to 1 (Kingma and Ba
2014). The recommended value of b1 for pix2pix by original research paper of pix2pix is
0.5 (P. Isola et al. 2017), and 0.9 is the default value for tensorflow (‘AdamOptimizer’,
n.d.). But in this work, 0.1 is also used to train pix2pix in order to investigate the effect
of decreasing b1 value and training with the lowest b1 value for the study area.

The default values of the number of filters in the first convolution layer of the gener-
ator (NGF) and the discriminator (NDF) by the original research paper are both 64 (Isola
et al. 2017). The maximum dimension of the input image to the pix2pix has to be 256�
256 (Isola et al. 2017). In this work, for C1, C2 and C3 as shown in Table 1, the values of
NGF and NDF are increased to 128, so that more information of the input images is cap-
tured in the first convolution layer. The input image to the pix2pix is 256� 256 which
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covers 128� 128 squared metre. The default value 64� 64 covers 32� 32 squared metre
in which case, some large buildings are not fully covered in the image. This could create
inconsistencies between the images when they are combined together to form the whole
map but the training time becomes faster. However, if the values of NGF/NDF are too
high, the training time will be increased too much, but large buildings will be fully cov-
ered in one image. For choosing appropriate values of other parameters for increased
NGF/NDF, pix2pix is first trained with learning rate 0.0002, NGF and NDF both 128,
epochs 150 and default values for other parameters. As shown in Figure 3, the loss sud-
denly increased at around step 26,000, which did not happen during training other mod-
els with NGF/NDF 64 and epochs 150. According to the training graph from
Tensorboard, the learning rate and epoch are decreased to 0.00002 and 100. Similarly, all
other parameter tuning processes are done by visual interpretation of training loss graph
using Tensorboard.

2.4. Accuracy assessment

Figure 4 shows two possible building areas after validating process; rectangular polygon as
the ground truth footprint and oval polygon as the extracted footprint. As shown in
Figure 4, from the overlap of two building footprints, three different area types are pos-
sible; true positive (TP) area where the extracted area overlays with the ground truth area,
false negative (FN) area where part of the ground truth area is missed to be extracted,
and false positive (FP) area where part of the extracted area does not exist in the ground
truth area.

The output images of validation with pix2pix are in raster format with 256� 256
dimension. However, manually digitized shape file is in vector format, and in order to
make comparison for validation, the output images are transformed into vector format.
After that, they are compared with manually digitized shape files, and three possible area
types are determined. Figure 5 shows how the comparison is made, and the area types are
determined. After the area types are determined, the number of pixels in each area type is
calculated based on the area in one pixel. As the spatial resolution is 0.5 m, there is
0.25 m2 in one pixel.

Inspired by the work in Gavankar and Ghosh (2018) and Rutzinger et al. (2009), the
pixel-based performance of all pix2pix models are evaluated with three factors; complete-
ness, correctness and F1 measure which are defined in Equation (2). The values of

Figure 3. Loss of pix2pix trained with epoch 150, learning rate 0.0002 and NGF, NDF 128.
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completeness, correctness and F1 are between 0 and 1. The larger the number, the better
the performance of the model.

Completeness Compð Þ ¼ TP
TP þ FN

,Correctness Corrð Þ ¼ TP
TP þ FP

, F1 ¼ 2TP
2TP þ FN þ FP

:

(2)

The completeness is the ratio between true positive pixels and the sum of true positive
and false negative pixels, and the correctness is the ratio between true positive pixels and
the sum of true positive and false positive pixels. However, F1 score considers both false
negative and false positive pixels. Completeness, correctness and F1 score are used in
order to evaluate how far a pix2pix model can completely and correctly extracts building
footprints. In this evaluation process, no overlap threshold is considered.

3. Results and analysis

In this section, the output images of all pix2pix models that are trained with eight differ-
ent configurations are compared with manually digitized polygons and the compared
results are analyzed.

3.1. Training results

Table 2 shows model name, training configuration, training loss and training time for all
eight models. As shown in Table 2, all models converge to the loss value around 0.15
although they have different training parameter values. Pix2pix models with higher NGF
and NDF, C1, C2 and C3 models, have lower training loss around 0.12–0.13. As a result
of increasing NGF/NDF, more information is represented between the input image and

Figure 4. Three possible area types (Shan and Lee 2005).

Figure 5. Flow chart of evaluation process.
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the target image, and the training loss is reduced. Moreover, as shown in Table 2, chang-
ing learning rates and b1 values does not have much effect on the training time.
However, increasing NGF/NDF twice also increases the training time about three times
even though the maximum epoch number is reduced.

3.2. Validating results

In the evaluation process, the validated output images are transformed into vector images
and compared with manually digitized polygon images. As described in section 2.2, the
images in validating dataset are considered in four different groups depending on how
much trees and buildings are distributed in the images. Figure 6(a,b) shows selected input
images from each type and their corresponding output images of all eight pix2pix models.
Blue area represents true positive areas, yellow area false negative areas and red area false
positive areas.

As shown in Figure 6(a), the input image for ‘Trees’ contains trees and asphalt areas.
Only a small building footprint area exists on the right of the image. All pix2pix models
except for C3 incorrectly extract asphalt regions as building footprints. Moreover, at the
top of the image, there is a small impervious concrete-like area and all pix2pix models
except for A3 incorrectly extract that region as building footprints. However, all pix2pix
models except for C1 are able to extract part of the small building footprint area on the
right of the image. The input image for “Buildings” in Figure 6(a) shows complex urban
patterns which mainly involves shadows, buildings with whitish, bluish, rusty and con-
crete-colour rooftops, vehicles and some trees. All eight pix2pix models incorrectly extract
shadow regions as building footprint areas. C2 detects almost all or part of the buildings
with multiple colour rooftops although it misses buildings with small footprint areas. As
shown in the image for ‘Trees’, one of the buildings in the image of ‘Buildings’ has similar
rooftop colour and all pix2pix models correctly detect that building.

As shown in Figure 6(a), the image of ‘Mixed’ contains a large building with reddish
rooftop. Part of the building is also occluded by trees and there are some shadow on the
roof. However, all eight pix2pix models extract almost the whole part of the buildings
although they have some false positive extraction on asphalt regions. There are two parts
of asphalt region but the models misclassify on the region which also contains many
white vehicles. This is similar to the incorrect classification in the image of ‘Trees’. There
is also a very small building footprint at the bottom but all models miss that area. The
image for ‘Pagodas’ also contains complex objects such as buildings with dark greenish
and rusty rooftops, shadows and trees, white vehicles and white impervious floor which is
part of the Great Shwedagon Pagoda. In the output images of all eight pix2pix models,
only very small or no part of the buildings with dark greenish rooftops are extracted
although they are able to extract the buildings with rusty rooftops on the left. The models

Table 2. Model name, training configuration, training loss and training time for all eight pix2pix models.

Model Training configuration (default unless stated) Training loss Training time (min)

A1 NGF/NDF 64, lr 0.0002, b1 0.5, epochs 150 � 0:15 76
A2 NGF/NDF 64, lr 0.0001, b1 0.5, epochs 150 � 0:15 64
A3 NGF/NDF 64, lr 0.00002, b1 0.5, epochs 150 � 0:15 63
B1 NGF/NDF 64, lr 0.0002, b1 0.9, epochs 150 � 0:15 71
B2 NGF/NDF 64, lr 0.0002, b1 0.1, epochs 150 � 0:15 69
C1 NGF/NDF 128, lr 0.00002, b1 0.9, epochs 100 � 0:12 192
C2 NGF/NDF 128, lr 0.00002, b1 0.5, epochs 100 � 0:12 193
C3 NGF/NDF 128, lr 0.00002, b1 0.1, epochs 100 � 0:12 194
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Figure 6. Selected sample input images and their corresponding output images of all eight pix2pix models.
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Figure 6. Continued.
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also incorrectly extract the whitish floor of the pagoda as building footprints which is
similar to the image of ‘Trees’. C3 detects no or very small part of all buildings in the
image except for one small building.

As shown in Figure 6(b), the image for ‘Trees’ mainly contains trees and vegetation,
and two small buildings with greenish and rusty rooftops. Similarly in the image of
‘Trees’ in Figure 6(a), the whitish area at the upper right corner of the image is misclassi-
fied as building footprint regions by all eight pix2pix models. Unlike the image of
‘Pagodas’ in Figure 6(a), the building with greenish rooftop is extracted by all pix2pix
models except for C1. This might be due to the lighter greenish colour of the rooftop. As
there is no asphalt region, there is low false positive area except for those in the upper
right corner of the image. For the image of ‘Buildings’ in Figure 6(b), the whole image is
almost covered by a large building with a whitish rooftop. There are also two holes inside
the rooftop region. By looking at the output images of the image of ‘Buildings’ in Figure
6(b), although the spectral properties of the rooftop region look similar, all eight models
can only extract the upper part of the whole rooftop whilst they misclassify the hole and
some part of shadow region as building footprints especially for A1. As the GeoEYE
image of the study area is monocular, side of the wall of the hole is seen from the top
view and most of the models except for A1 can distinguish between the shadow of the
hole and side of the wall.

As shown in Figure 6(b), the image of ‘Mixed’ is with six buildings with rusty rooftops
and trees. The spectral properties of the rooftops seem similar except for them at the
lower right corner of the image. By looking at the output images, only A1 and B2 can
extract the buildings at the bottom right corner but the other pix2pix models miss to
extract. A1 and B2 are also able to extract the buildings which are partially occluded by
trees at the left of the image but they have more false positive areas. The false positive
area of A1 at the upper left part of the output image is actually building footprint region
which is not included in the ground truth as it is too small. As shown in Figure 6(b), the
image of ‘Pagodas’ includes the Shwedagon Pagoda which is a golden structure with white
ceramic floors and surrounded by the buildings with greenish rooftops. Unlike the image

Table 4. Average completeness, correctness and F1 values of all images by eight pix2pix models.

Image types Evaluation A1 A2 A3 B1 B2 C1 C2 C3

All images Comp 0.5008 0.4042 0.4625 0.4967 0.5251 0.4520 0.5731 0.4348
Corr 0.4911 0.6293 0.5908 0.5866 0.5231 0.5865 0.5429 0.5478
F1 0.4200 0.4226 0.4486 0.4751 0.4549 0.4603 0.4876 0.4200

The highest values are presented in bold.

Table 3. Average Completeness, Correctness, and F1 Score for four image types validated by eight pix2pix models
(highest values in bold and lowest values in italic).

Image Types Evaluation A1 A2 A3 B1 B2 C1 C2 C3

Trees Comp 0.5485 0.4162 0.4700 0.4221 0.5121 0.2922 0.5114 0.4220
Corr 0.0961 0.3268 0.1736 0.2491 0.1126 0.2424 0.1360 0.1524
F1 0.0955 0.2174 0.1661 0.1916 0.1254 0.1632 0.1135 0.1633

Buildings Comp 0.4061 0.3758 0.4622 0.5758 0.5390 0.5815 0.6390 0.4733
Corr 0.6380 0.8143 0.8463 0.8288 0.8106 0.8021 0.8189 0.7837
F1 0.4825 0.4814 0.5741 0.6422 0.6211 0.6445 0.6943 0.5675

Mixed Comp 0.6298 0.5012 0.5499 0.5856 0.6817 0.5610 0.7154 0.5706
Corr 0.6528 0.8143 0.7868 0.7613 0.6993 0.7652 0.7162 0.7885
F1 0.6263 0.5950 0.6219 0.6379 0.6730 0.6224 0.6943 0.6270

Pagodas Comp 0.4187 0.3234 0.3678 0.4033 0.3677 0.3731 0.4265 0.2733
Corr 0.5773 0.5616 0.5566 0.5074 0.4698 0.5365 0.5004 0.4667
F1 0.4757 0.3964 0.4322 0.4288 0.3999 0.4113 0.4482 0.3222
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of ‘Pagodas’ in Figure 6(a), the buildings with greenish rooftops are properly extracted
especially by A1 and C2. This might be because of the whitish ceramic floor that is sur-
rounding the buildings with greenish rooftops which makes them distinct objects from its
environment. The central part and outer part of the golden structure are missed to be
extracted by the models although they have similar spectral properties.

Table 3 shows the average completeness, correctness and F1 score of all images in each
four different types for all eight pix2pix models. All three evaluating parameters, com-
pleteness, correctness and F1 score, are compared for all four different types of images;
Trees, Buildings, Mixed and Pagodas. The highest completeness value of all four different
types is at ‘Mixed’ images from C2 at the value of 0.7154 and the highest correctness
value of all four different types is at ‘Buildings’ from A3 with 0.8463. The highest F1 value
of all different types ties at 0.6943 between ‘Buildings’ and ‘Mixed’ images both from C2.

The lowest F1 value of all four types is at ‘Trees’ images with a value of 0.2174. The
lowest correctness value of all different image types is 0.0961 is also in this type from A1.
All images in the ‘Trees’ images are mostly covered with trees. As trees are major part of
the images, there are only few building footprints. All models except for C1 are able to
detect more than 40% of the ground truth for ‘Trees’ images but they have very high false
positive areas. This high false positive areas make very low correctness values for the
models. The lowest completeness value of all four different image types is in ‘Pagodas’
images with 0.2733 from C3. As shown in Table 3, C2 has the highest average complete-
ness values in ‘Building’ images and ‘Mixed’ images. C2 also has high correctness values
in both different image types which make it have the highest average F1 values in
‘Building’ images and ‘Mixed’ images. A2 has the highest average correctness and F1 val-
ues for ‘Trees’ images, highest average correctness for ‘Mixed’ images, and high correct-
ness values in other types, but it shows the lowest performance for completeness for
‘Building’ and ‘Mixed’ images.

As shown in Table 3, for ‘Trees’ images, A1 has the highest completeness value with
0.5485 and A2 has the highest correctness value with 0.3268 and highest F1 value with
0.2174. All eight pix2pix models show very poor performance for the images in ‘Trees’.
For ‘Buildings’ images, all eight models except for A2 have average completeness of more
than 0.4 and C2 has the highest value up to 0.63. Correctness values are higher than com-
pleteness values with up to 0.84 by A3 and the lowest average correctness value is 0.63 by
A1. For ‘Mixed’ images, the average completeness is the highest amongst the other image
types with up to 0.71 by C2 and the average correctness values are higher than the com-
pleteness values with the highest value up to 0.81 by A2. As in Table 3, for ‘Pagodas’
images, C2 has the highest average completeness value with up to 0.42 and A1 has the
highest average correctness and F1 values with 0.57 and 0.47 respectively.

Figure 7. Two example images in the training dataset which have inconsistent representation of building foot-
print areas.
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Table 4 shows the average values of completeness, correctness and F1 values of all 65
images in the validating dataset from all eight pix2pix models. As shown in Table 4, C2
has the best average completeness and F1 values with 0.57 and 0.48, respectively, and
high average correctness values with 0.5429 and is the best pix2pix setup of all eight mod-
els. The highest average correctness value is 0.6293 by A2 and the lowest average correct-
ness is 0.4911 by A1. B1 has average F1 value of 0.4751 and becomes the second best
pix2pix model.

4. Discussion

In this work, three training parameters of pix2pix, learning rate, b1 and number of filters
in the first convolution layers of the generator and the discriminator (NGF/NDF) are var-
ied in order to set up different training configurations. According to the results, both set-
ting b1 value at default and increasing NDF/NGF together which is C2 model can
increase both completeness and correctness of pix2pix with default setting. Pix2pix with
both increased and decreased b1 values and higher NGF/NDF which are C1 and C3, have
lower completeness but higher correctness than pix2pix with default value. However, the
effect of changing b1 values is different for B1, A1, B2 models and C1, C2, C3 models.
For example, as shown in Table 4, decreasing b1 from default value to 0.1 in A1, B2 mod-
els increases both completeness and correctness, but the effect is the opposite for C2, C3
models. Moreover, increasing b1 from default value to 0.9 has similar effect for both B1,
A1 and C1, C2 models i.e. decreased completeness and increased correctness (Table 4).
According to the results in Table 4, changing training parameter values has effect on both
completeness and correctness which make them increased or decreased. It can also be
said that the models with decreased completeness values have increased correctness val-
ues; for example, A2, A3, B1, C1 and C3. The changed values of completeness and cor-
rectness in C2 and B2 are almost balanced.

According to the evaluation results in Figure 6(a,b), it can be seen that all pix2pix
models have poor extraction rate for buildings with greenish rooftops. But, that depends
on the objects around the buildings i.e. if the surrounding objects have different spectral
properties, the detection rate is higher as shown in the image of ‘Pagodas’, Figure 6(b).
The trained pix2pix models also have low extraction rate for buildings with rusty rooftops
and buildings with small footprint areas. Especially for the buildings with rusty rooftops
which are surrounded by trees and vegetation, the detection rate is very low as shown in
the image of ‘Mixed’, Figure 6(b). The size of input image to pix2pix is set 256� 256 in
order to cover large buildings. More features can be learned in one image if larger input
image size is used. But if smaller input image is used, the extraction for small buildings
such as buildings in ‘Mixed’ group with rusty rooftops surrounded by trees can be better.
However, small input image gives small output images and they can produce inconsisten-
cies as discussed in section 2.3. Moreover, as shown in the images of ‘Buildings’ in Figure
6(a,b), some buildings with whitish rooftops are missed and some are extracted. This is
due to inconsistent colour representation of building and non-building in the training
datasets, i.e. the white ceramic floors of pagoda region are regarded as non-building but
some buildings have rooftops with similar spectral properties of pagoda floors. This can
be seen in Figure 7(a,b).

According to the results in Table 3, although the best pix2pix model C2 has 0.1135
and 0.4482 of F1 values for ‘Trees’ and ‘Pagodas’ image groups, it has 0.6943 of F1 values
for both ‘Buildings’ and ‘Mixed’ image groups which are commonly found in urban and
suburban areas. The reasons why the best pix2pix model C2 has only 0.4876 of F1 value
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(Table 4) is because of low F1 values of ‘Trees’ and ‘Pagodas’ image groups. For the
images in “Trees” group, there are only very few buildings in one image and a small
amount of missed extraction or incorrect extraction gives a big impact on the perform-
ance (Table 3). And due to inconsistencies in the training images as shown in Figure 7,
the pix2pix models show low completeness, correctness and F1 values for images in
‘Pagodas’. As shown in Figure 7(a), pagodas are open structure without roofs, and their
floors are made of whitish ceramic tiles. Their spatial and spectral properties are different
from other buildings in the study area. Such poor extraction results on those images with
pagodas have effect on overall performance. It can also be seen in Table 3 that for the
model with high correctness, it has low completeness for example, for the case of A2 in
‘Mixed’ and A3 in ‘Buildings’. In this research, F1 value is chosen to decide for the best
performance but to make the choice between the models with better completeness and
better correctness depends on the intended application of the map.

During training process, it takes around 420–480min (7–8 h) by a single user with GIS
software to create 1806 polygons of building boundaries in the study area which only cov-
ers one township of Yangon city. There are 45 townships in the whole Yangon city and it
will take a lot of time if manual digitization is used. However, in this research, it only
takes 193min (3 h) to train pix2pix with 264 training images and it takes less than 1min
to validate 64 images in the validating dataset. So, pix2pix generates building
footprint map of the study area in about 5min whereas manual digitization takes
around 420–480min.

5. Conclusion

In this research work, several parameters of pix2pix are adjusted in order to analyze the
performance of pix2pix from the changes and to get the best pix2pix configuration.
Learning rate, b1 term of Adam and number of filters in the first convolutional layer of
the generator and the discriminator are chosen to test. According to the validating and
evaluating results, pix2pix setup with increased NGF/NDF and learning rate and default
b1 has the best performance. In this work, the best performance is decided by using F1
score as it is the ratio of true positive areas to both false positive and false negative areas
which means it considers both completeness and correctness altogether. Although three
training parameters are changed in order to get the best performance, it is difficult to
conclude the effect of changing each parameter. For example, it cannot be said decreasing
b1 increases the performance because changing b1 from 0.9 to 0.5 decreases F1 score but
it is opposite when b1 is changed from 0.5 to 0.1. Although the performance of pix2pix is
increased by increasing the number of filters twice, the training time also increases up to
three times.

If the spectral properties of validating images are more similar to those of training
images, the extraction results are better. As building rooftops of Yangon City have diverse
colours such as concrete-like, reddish, greenish, bluish, whitish, rusty etc., and buildings
are not constructed in systematic layout, training pix2pix with images from the study area
gives better extraction results. For other urban areas which have buildings with similar
spectral properties of Yangon City, our training parameter configurations can give similar
results. For urban areas which have different spectral properties of Yangon City and in
case they need to train with their own dataset, they can learn from our experience with
adjusting training parameters and their effects, and do a jump start. Based on our experi-
ence, only the training process takes long time depending on the number of images in the
training dataset and training parameter configurations, but once the training settings for
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best performance of pix2pix is configured and training process is done, the implementa-
tion is much faster than training process.

This research is still ongoing as part of SATREPS Project and only RGB bands of
GeoEYE image are used to train pix2pix and validate the performance of trained pix2pix.
The limitation of availability of the satellite image with multiple bands is one of the most
crucial reasons for using only RGB bands. However, this is important for developing
countries such as Myanmar which cannot afford much for VHR satellite image with RGB
and infrared (IR) bands. Using the same satellite image for both training and validation,
we also have plans to apply other deep learning algorithms such as fully convolutional
network (FCN) which is for semantic segmentation and Glow which is another generative
deep learning model, and compare with pix2pix. At this moment, we are also discussing
with other government organization for collaboration such as Yangon City Development
Committee (YCDC) which maintains Yangon City Database. And then, we can implement
our method for the whole area of Yangon City and compare the results and time taken of
our method with those of manual digitization.

In conclusion, this research work tries to reduce the cost of necessary datasets, and
automate and speed up the digitization process in creation of urban building map by
using conditional generative adversarial network (CGAN) and according to the results,
pix2pix can show promising performance in building footprint extraction from only
GeoEYE monocular optical satellite RGB image.
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