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A B S T R A C T

Yangon, the former capital of Myanmar, is the biggest city in the country with more than five million people and
it is also the major country's economic areas. These areas are complex with three classes of residential,
commercial and industrial buildings. Understanding building uses in the city with the information of the
locations and the quantitative measurement is very important to support urban management and development
with various aspects. This research proposed a methodology to classify types of buildings with three classes in
Yangon, Myanmar by using remotely sensed data. In this research, stereo GeoEye images, multi-spectral Landsat
image and night-time light (NTL) image from Visible Infrared Imaging Radiometer Suite (VIIRS) were employed
to extract types of buildings. The Stereo GeoEye images were used to obtain the heights of buildings, the Landsat
image was classified to provide land cover areas, and NTL image was applied to separate NTL activities. By using
the hierarchy classification with (1) the heights of buildings, (2) land cover areas and (3) NTL consumptions, the
buildings were classified into three classes with (1) residential, (2) commercial, and (3) industrial buildings. In
the experiments, the estimated building type map by our proposed method was compared with a land use map
and surveying building data. The comparing results indicated that our methodology classified types of buildings
in efficiency with the accuracy of 76% and the Kappa coefficient of 0.58.

1. Introduction

Yangon, formerly known as Rangoon, is the largest city in Myanmar,
formerly known as Burma. Yangon is the major of country's economic
areas with more than five million population, and the urban areas look
complex with residential, commercial, and industrial buildings (Morley,
2013). The city is located on the terrain mixed with small mountain and
flat areas. Yangon has faced many problems causing by flood disasters
(mmtimes.com, Accesesed 2015). By knowing the building types with
the locations and the quantitative measurement, this information can
be employed to contribute to urban management and development to
reduce the damages of flooding disasters.

Understanding building information in the city is essential to
support urban development and management in several aspects.
Many research works relating to the building information for urban
management have been introduced in various features. In the ecology
perspective, urban planning in term of ecological city has been done by
responding to building construction (Liu et al., 2016). In energy aspect,
urban management to preserve energy consumptions by using building
information has been presented (Ma et al., 2017). In pollution problem,
the impact of air pollution by building height information has been

introduced (Kuzmichev et al., 2016). In waste management, the
estimation of waste construction has been proposed by applying the
information on residential buildings (Carpio et al., 2016).

In the past, the building type is provided by surveying method
(Kibblewhite et al., 2004). By using surveying method, the deep
information of buildings are available with types, designs, materials
etc. However, it takes drawbacks from using a number of human
workers, long process time including a field trip and high budgets.
Furthermore, if the urban areas are very vast and there are various
human-built features, it will be required to take the higher resources to
collect all the information by surveying method. Hence, this method is
suitable for the specific areas or regions more than the entire city or
vast areas.

Since Remote Sensing technology provides the observation in large
areas, many researchers have widely applied remotely sensed data to
detect the building areas and also classify types of buildings in the large
areas.

To extract building areas or building boundaries, various research
works have been proposed by using spatial and spectral information
from remotely sensed data. The aerial photos have been used to extract
building extents (Huertas and Nevatia, 1988). Then, Lin and Nevatia
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(1998) introduced the methodology to extract building areas and
construct them in 3-D shape by using aerial photos. Next, the
researchers employed line extraction as robust algorithm to classify
building areas by using aerial images (Kim and Muller, 1999). By using
the integration between high-resolution images from IKONOS and
LiDAR (light detection and ranging) data, Sohn and Dowman (2007)
presented the methodology to automatically extract the building
footprints. After that, the research work using the high spatial resolu-
tion imagery from QuickBird was proposed (Myint et al., 2011). They
applied the object-based classifier to enhance the result of building
areas. Then, Grigillo and Fras (2011) introduced the building detection
method by using the high-resolution images acquired by GeoEye. They
employed the segmentation method to extract the building areas. Next,
the building extraction method based on object-based classification was
proposed by Turker and Koc-San (2015). They used support vector
machine (SVM) method to classify the building areas and then applied
Hough transform and perception grouping to extract the building
boundaries.

However, the information of building boundaries is not sufficient to
support in the deep analysis with practical applications for urban
management and development. Therefore, many research works about
classifying building types have been introduced to contribute to the
effective applications. The researchers introduced the methodology to
classify building types by using airborne laser scanning data (Belgiu
et al., 2014). They applied object-based image analysis to extract the
three types of buildings with residential building, apartment building,
and industrial Building. Then, Lu et al. (2014) presented the building
type classification using LiDAR data. They used LiDAR data to provide
the building information such as the height and the shape. Then, the
building information was used with machine learning method to
categorize building types with three classes of single-family houses,
multiple-family houses, and non-residential buildings. After that, the
building classification using a high-resolution image and GIS data was
introduced by Du et al. (2015). They used the high-resolution image
and GIS data as the building information to provide many features of
building. They used the random forest method with the features to
distinguish building types with seven classes of low-story shantytowns,
medium-story apartments, high-rising apartments, commercial build-
ings, industrial buildings, auxiliary buildings.

In addition, the other aspect of building information by using
Remote Sensing technology has been introduced. The damaged building
classification by using high-resolution oblique airborne images was
proposed (Vetrivel et al., 2015). They detected the damaged building
type by using anomaly segmentation of the building extents.

In the building classification, most research works rely on the
combination with GIS data that need surveying method that has
drawbacks of high used resources. This is one research to aim at using
input data from remotely sensed dataset based on pixel-based method
to classify types of buildings. Another point is to use nighttime activities
from nighttime light data to support the classification of the building
types.

In this research, we proposed a methodology to classify the types of
buildings with three classes; residential buildings, commercial build-
ings, and industrial buildings in Yangon, Myanmar by using Stereo
GeoEye images, Landsat image and night-time light (NTL) image. A
methodology to classify the building type was described in Section 2. In
Section 3, the experimental results were compared with validated data
and the discussions were explained. Finally, Conclusions of this
research were given in Section 4.

2. Methodology

2.1. The relevant factors to indicate the types of buildings

In this research, three types of buildings with (1) commercial
buildings, (2) industrial buildings and (3) residential buildings were

concentrated. Commonly, commercial buildings, office buildings, and
public facilities have the characteristics of the high-rise buildings. Also,
at the night, these buildings have high consumptions of light energy due
to the various active activities and have crowded people. As a result, the
buildings have two characteristics with high-rise buildings and high
NTL. In this research, for shortening words, commercial buildings refer
to commercial buildings, office buildings, and public facilities. Next,
industrial buildings such as factories or plants have the features of high-
rise buildings. However, at the night, the industrial buildings take low
consumptions of light energy. Therefore, the industrial buildings have
two features with high-rise buildings and low NTL. Then, residential
buildings have the aspect of low buildings such as houses and take low
consumptions of light energy as well. By using two factors with (1) the
heights of buildings and (2) NTL activities, our methodology with
hierarchy classification is present in Fig. 1. Firstly, the Stereo GeoEye
images were used to obtain the height of a building. Then, the Landsat
image was classified to provide land cover areas. Next, NTL image was
applied to separate NTL activities. After that, we defined the hierarchy
classification with (1) the heights of buildings, (2) land cover areas and
(3) NTL consumptions to classify the building types with (1) residential
buildings, (2) commercial buildings, and (3) industrial buildings.
Finally, the improved process was taken an employment to enhance
the result of the building classification. The flowchart of our methodol-
ogy to categorize the building types is depicted in Fig. 1.

2.2. Remotely sensed dataset

The study location of this research was focused on the center areas
of Yangon city, Myanmar with the frame from 16.76502° to 16.92635°
North (Latitude) and from 96.04246° to 96.27131° East (Longitude).

In this research, remotely sensed dataset were acquired from three
sources with GeoEye, Landsat 8, NPP (National Polar-orbiting
Partnership) – VIIRS (Visible Infrared Imaging Radiometer Suite). The
stereo GeoEye images with a high spatial resolution were employed to
provide the heights of buildings. The multispectral Landsat image with
a high spectral resolution was classified to obtain land cover areas. The
NTL image from NPP-VIIRS, which has the capability to obtain day/
night band composite data (DNB), was taken an exploit to observe NTL
consuming activities. The radiance of DNB is a number with the
magnitude of 10−9 and the unit of W/(cm2-sr). The details of the
satellite dataset are displayed in Table 1 and Fig. 2 shows the images of
the remotely sensed dataset.

Fig. 1. Flowchart of our methodology to classify the building types.

Table 1
Details of the remotely sensed dataset.

Satellite Resolution Bands Acquisition date

GeoEye-1 0.5 m 3 2013/11/08, 2013/11/16
Landsat-8 30 m 11 2015/02/26
NPP-VIIRS 460 m 1 2012/04/18–2012/04/26,
(DNB) 2012/10/11–2012/10/23
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2.3. Individual classifications

For individual classifications, we had mainly three classification
processes. Firstly, the Stereo GeoEye images were used to classify the
building classes with low and high buildings. Secondly, the Landsat
image was classified to provide land cover classes with three classes of
urban, vegetation and water. Thirdly, NTL image was classified NTL
activities into three classes of low, medium, and high light energy
consumptions. The details of each process are explained as follows.

For the first classification process, the stereo GeoEye images were
used by using PCI Geomatica 2015 software to provide Digital Surface
Model (DSM). Then, the DSM was filtered by Morphological filter to get
Digital Terrain Model (DTM). By subtracting DSM with DTM, Digital
Building Model (DBM) was provided. Next, the stereo GeoEye images

were also used with the DSM to provide the orthorectified image with
RGB bands. After that, the orthorectified image was classified by using
Mahalanobis distance method (Maesschalck et al., 2000). Mahalanobis
method is a well-known supervised classification that separates each
class by corresponding to the mean and covariance matrix of observed
data. We separated the orthorectified image into two classes with (1)
vegetation and (2) non-vegetation. The training samples per each class
were collected more than five hundred samples. After classifying with
Mahalanobis method, we got the classification result with two classes of
vegetation and non-vegetation. By using non-vegetation areas and the
DBM, the heights of buildings without the negative effects of trees or
grasses were obtained. The flowchart to extract the heights of buildings
without trees and grasses is presented in Fig. 3. Fig. 4 shows the
estimated heights of buildings without trees and grasses.

After that, we classified the heights of buildings into two groups by
using manual thresholding. There were two classes with (1) low
buildings from 2 to 10 m (1–2 floors) and (2) high buildings with more
than 10 m (more than 2 floors). In general, one floor of a residential
building is 3.1 m and one floor of a commercial building is 3.9 m
(heightcalculator.ctbuh.org, assessed 2015). Fig. 5 shows the result of
the building classes with low and high buildings.

For the second classification process, the multi-spectral Landsat
image was classified by using Mahalanobis distance. Land cover classes
were separated into three classes with (1) urban, (2) vegetation, (3)
water. The training samples were selected more than five hundred
samples per each class. After classifying with Mahalanobis distance
method, the land cover result with three classes was provided (see in
Fig. 6).

For the third classification process, we separated NTL image into

Fig. 2. (a) GeoEye image, (b) Landsat 8 image, (c) NPP-VIIRS DNB image.

Fig. 3. The flowchart of obtaining the heights of buildings without trees and grasses.

 High Building 

 Low Building  

Fig. 4. The heights of buildings without trees and grasses.
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three classes of low, medium and high NTL classes by using K-means
(Hartigan et al., 1979). K-means is the unsupervised classification that
is popular for automatic clustering in data mining. After using K-means
classification, we had three classes of NTL with (1) low NTL class with
the mean of 1.83 (Digital number, DN), medium NTL class with the
mean of 8.69 (DN) and high NTL class with the mean of 24.13 (DN).
Fig. 7 illustrates the NTL result with three classes.

2.4. The hierarchy classification

After obtaining three classification results with (1) the building
classes with low and high buildings, (2) the land cover areas, (3) the
NTL consuming activities, the hierarchy classification was employed to
classify the types of buildings with (1) residential buildings, (2)
commercial buildings, (3) industrial buildings.

The building classes with low and high buildings were provided by
considering the effects of trees and grasses. However, some errors from

vegetation and water areas still remained since the spectral resolution
in the stereo GeoEye image with RGB bands is quite poor when
comparing with Landsat 8 image. Hence, integrating between the result
of building classification from stereo GeoEye images and the result of
land cover classification from multi-spectral Landsat 8 image was
applied. By using only urban areas from the land cover result with
the result of building classification, the more accurate result of the
building classification was provided without any errors from vegetation
and water areas. After that, we assigned that the low buildings
represent residential buildings, and high buildings represent commer-
cial buildings and industrial buildings.

In order to separate commercial buildings from industrial buildings,
the combination between the high building class (commercial and
industrial buildings) with the result of NTL classification was applied.
We defined that commercial building has high NTL intensity but an
industrial building has medium NTL intensity. In this research, we
found that low NTL intensity generally indicated non-urban areas.
Thus, it did not include in consideration for building classification. The
result of the building classification with three classes of (1) residential
buildings, (2) commercial buildings, and (3) industrial buildings is
depicted in Fig. 8.

2.5. Improving the classification result

Since the spatial resolution of NTL image from NPP-VIIRS DNB is
quite low with approximately 460 m. The edge areas among classes in
the result of NTL classification had significant errors. In order to solve
the problem, the spatial relationship between commercial and indus-
trial areas was employed. Commonly, industrial buildings such as
factories and plants probably make loud noises or some pollutions.
Therefore, they should be located in isolation from commercial build-
ings such as shopping malls and hotels or office buildings that have a
number of human activities. As a result, the rule of the distance
between commercial and industrial buildings was defined that the
building that is located near the commercial buildings must be
residential or commercial building. In the experiments, we found that
the threshold of the ruling distance is 1 km since it gave the high
accuracy. Fig. 9a shows the improved result of the building classifica-
tion.

3. Results and discussions

3.1. Results and validations

In order to validate the result of building classification, we
compared the estimated building use image by our methodology
(Fig. 9a) with the land use map in 2012 that was provided by
International Center for Urban Safety Engineering (ICUS) (Fig. 9b).
Since the resultant building use map was represented in term of a
building while the land use map was represented in term of an area,

Legend
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Fig. 5. The result of the building classification with low and high buildings.
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Fig. 6. The result of the land cover classification.
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Fig. 7. The result of the night-time light (NLT) classification.
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Fig. 8. The result of the building classification with three classes.

T. Sritarapipat, W. Takeuchi Remote Sensing Applications: Society and Environment 6 (2017) 46–51

49



they cannot be compared directly. Therefore, in the comparison, the
building areas of our resultant map were selected to compare with land
use areas of the land use map. The accuracy of the estimated building
type map versus land use map is 76.04% with the Kappa coefficient of
0.57. The confusion matrix is demonstrated in Table 2.

The statistical of the estimated building areas in Yangon is shown in
Table 3.

For validating the heights of buildings, we compared the estimated
heights of the buildings with surveying building data. In surveying the

building data in Yangon, six regions from A to F regions with 59
buildings including 22 residential buildings, 22 commercial buildings,
15 industrial buildings were surveyed in 2015 (Fig. 10). We measured
the heights of buildings by using the manual calculation (heightcalcu-
lator.ctbuh.org, assessed 2015) and using Smart Measure known as a
smartphone application. The comparison of the estimated heights and
surveying heights of the buildings is depicted in Table 4.

In addition, since the DTM was employed to calculate the DBM, it
needs to be checked to confirm that DBM is reliable to be used. In this
work, we compared the estimated DTM with surveying elevation data
in 2012 with 98 locations. The surveying elevation data was provided
in the Japan International Cooperation Agency (JICA) report that was
done by NIHON KOEI Company. The root mean square error (RMSE)
between the estimated DTM and the surveying elevation data was
1.62 m.

3.2. Discussions

In the experimental results, our methodology extracted the types of
buildings in Yangon, Myanmar with the overall accuracy of 76.04% and
the Kappa coefficient of 0.58. It indicated that our methodology has the
capability to mainly categorize residential, commercial, and industrial
buildings. Firstly, commercial and industrial buildings can clearly
separate from residential buildings because of the different heights of
the buildings. Secondly, although commercial buildings and industrial
buildings are generally high-rise buildings, the activities of commercial
buildings and industrial buildings in the nighttime are clearly different.
As a result, the commercial buildings can distinguish from industrial
buildings by using NTL consumptions.

However, when considering in the classification result in each class,
our methodology detected the residential buildings with some errors
since some residential buildings have the heights of the buildings more
than two floors (3–4 floors). Hence, our methodology did not capture
those buildings and it made the incorrect result. For commercial or
office buildings, our methodology had high errors for this class because
some commercial or office buildings have the heights of the buildings
less than three floors (1–2 floors). Our methodology failed to detect
them properly and it detected them as the residential buildings.
Especially, for industrial buildings, since in Yangon city, there were
mixed industrial buildings between heavy industrial buildings and
medium industrial buildings. Our method could not find some medium
industrial buildings (1–2 floors). As well as, in heavy industrial areas,
the industrial buildings are combined between high-rise buildings
(factories or plants) and low-rise buildings (official buildings for the
industries). As a result, it made huge errors for this class since it
classified those buildings as residential buildings. In order to solve such
problems, the spatial analysis algorithm in profound analysis can be
included in the methodology.

For estimating the heights of the buildings, our method to extract

(a) 
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(b) 
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Industrial area 

Fig. 9. Comparison between the estimated building type map (a) and the land use map in
2012 (b).

Table 2
The confusion matrix between the estimated building type map and the land use map in
2012.

Land use map in 2012

Residential
areas

Commercial
areas

Industrial
areas

The estimated
building
use map

Residential
buildings

37.588 km2 2.189 km2 5.240 km2

(58.63%) (3.41%) (8.17%)
Commercial
buildings

4.153 km2 0.994 km2 0.173 km2

(6.48%) (1.55%) (0.27%)
Industrial
buildings

0.668 km2 0.042 km2 0.976 km2

(1.04%) (0.06%) (1.52%)

Table 3
The statistical of the estimated building areas in Yangon.

The types of the buildings Areas

Residential buildings 55.26 km2 (86.20%)
Commercial buildings 6.77 km2 (10.55%)
Industrial buildings 2.08 km2 (3.24%)
Total buildings 64.11 km2 (100%)

A 

B 

F 

E 

C 

D 

Fig. 10. The six regions of surveying building data from A to F regions.
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the heights of the buildings has the limitation that it cannot detect a
building that is higher than 25 m. Since some commercial buildings in
the skyscraper center are very tall buildings with around 40–80 m, our
method estimated these buildings with around 25–40 m. However, this
estimated result of the heights of the buildings is good enough to
separate commercial or industrial buildings from residential buildings.

In statistical of the building areas, we found that there were
55.26 km2 (86.20%) for residential buildings, 6.77 km2 (10.55%) for
commercial buildings and 2.08 km2 (3.24%) for industrial buildings. It
means most areas were covered with low-rise buildings (defined as
residential buildings) with 86% and some areas were combined with (1)
high-rise buildnings and high nighttime activites (defined as commer-
cial buildings) with 11% and (2) high-rise buildnings but low nighttime
activites (defined as industrial buildings) with 3%. The ratio among
these types of buildings can possibly indicate the economic state or the
human problem in the city. As well as, by combination with flood
disaster vulnerability, this information can be used in urban planning
and management to increase or reduce some types of the buildings and
find suitable locations for each building type in order to reduce the
damages of the disaster in the future.

4. Conclusions

We proposed a methodology to classify building types using
remotely sensed data in Yangon, Myanmar. Stereo GeoEye images were
used to provide the heights of buildings. The multi-spectral Landsat-8
image was applied to provide land cover areas. NTL image from VIIRS
was employed to separate NTL activities. After that, the hierarchy
classification was applied to classify the types of buildings with (1)
residential buildings, (2) commercial buildings, (3) industrial buildings.
The rule of the distance between commercial and industrial buildings
was defined to improve classification result.

To validate the estimated map of the building classification, we
compared it with the land use map in 2012. The comparing results
indicated that our methodology extracted the types of buildings in
efficiency with the accuracy of 76% and the Kappa coefficient of 0.58.

The statistical information of building use can be applied to indicate
the current economic state or problem in the city and support to plan
urban development with sustainability. By combining with flood
vulnerability map, it can be support urban planning and management
to reduce flood disasters.

As the current problem by using our methodology, the estimated
residential buildings look overestimate. Since some commercial and
industrial buildings are low-rise buildings; especially industrial build-
ings, low-rise buildings of commercial and industrial buildings were
classified to be residential buildings that are incorrect. To against this
problem, the spatial analysis method in deep analysis can be applied.
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