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Abstract: The rise in big data applications in urban planning and transport management is now
widening and becoming a part of local government decision-making processes. Understanding
people flow inside the city helps urban and transport planners build a healthy and lively city.
Many flow maps are based on origin-and-destination points with crossing lines, which reduce
the map’s readability and overall appearance. Today, with the emergence of geolocation-enabled
handheld devices with wireless communication and networking capabilities, human mobility and
the resulting events can be captured and stored as text-based geospatial big data. In this paper,
we used one-week mobile-call-detail records (CDR) and a GIS road network model to estimate
hourly link population and flow directions, based on mobile-call activities of origin–destination
pairs with a shortest-path analysis for the whole city. Moreover, to gain the actual population size
from the number of mobile-call users, we introduced a home-based magnification factor (h-MF) by
integrating with the national census. Therefore, the final output link data have both magnitude
(actual population) and flow direction at one-hour intervals between 06:00 and 21:00. The hourly link
population and flow direction dataset are intended to optimize bus routes, solve traffic congestion
problems, and enhance disaster and emergency preparedness.

Keywords: big data; CDR origin–destination pairs; shortest-path analysis; hourly link population
and flow direction; home-based magnification factor (h-MF)

1. Introduction

Information on human mobility (both magnitude and direction) inside the city is important
in urban and transport planning, such as bus route planning and optimization [1], trip frequency
scheduling [2], transportation modes prediction [3], traffic congestion management [4], public facility
management, and disaster and emergency preparedness [5], in order to build a healthy and lively
city. Today, big data applications in urban planning and transport management are widening and are
becoming part of local government decision-making processes. Traditional ways of acquiring people
flow inside the city are paper-based travel surveys or other transport statistics, which are expensive
and labor intensive. Today, human mobility and activities can be tracked using mobile phone call
activities (call-detail record, CDR), internet usage, and other social interacting events through online
social networks (OSN) and other wireless sensor networks (WSNs). Although CDR has some limitation
on data acquisition because of privacy protection, CDR is one means to identify the mass movement of
people inside a city or across the country inexpensively and time-effectively. CDR data have been used
by many researchers for origin–destination trip generation [6–11], travel behavior analysis [12–14],
social interaction [15,16], urban analysis [17], and population estimation [18,19].
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Generally, traffic-count information is acquired from observed data, such as traffic-count surveys,
electronic toll collection (ETC), and gates and other roadside sensors. Many researchers attempt
to estimate link flow from observed data [20], trip questionnaire surveys, and traffic-count survey
data [21], and generate origin-and-destination (OD) matrices from automatic vehicle identification
data [22]. Moreover, CDR data have been used for road usage and link traffic volume, and OD flow
estimation [23–25]. In general, traffic flow measurements include not only vehicles but also travelers
by measurement of their speed, direction, and magnitude at specific intersections and in specific lanes.

From a cartographic point of view in GIS, many flow-mapping algorithms and methods have
been developed for visualization of either location-based flow maps (i.e., migration flow, commodity
flow, flight paths, etc.) or non-spatial flow maps (i.e., Sankey diagrams, Chord diagrams, thermal
flow diagrams, system flow diagrams, etc.) [26–28]. Flow maps can be represented as many-to-many
(many origins to many destinations) or one-to-many (one origin to many destinations) in visualization
methods. Many flow-mapping approaches use OD or source and target locations, which do not
convey detailed movement patterns along the flow path. Moreover, many flow maps have some
problems in readability and overall appearance because of crossing lines on the map. Within the
scope of interactive mapping (i.e., digital cartography or Web-GIS), many paper-based cartographic
problems can be overcome by means of setting visibility map scales of individual features and symbols
or by adjusting the placement and orientation of labels by preventing them from overlapping with
each other.

In this study, we estimate the link population (magnitude) and direction from one-week of CDR
data to map people-flow patterns for the whole city at one-hour intervals. The main objective of
the paper is to use mobile CDR data to estimate hourly link population and their flow direction at a
regional scale to use in future urban and transportation planning processes. This paper is organized
as follows. First, we list the data used in this study and describe the study area. Second, we explain
our data-handling steps for CDR data preprocessing, home-based magnification factor computing,
and generation of hourly link population and flow directions. Finally, we discuss the results and
validation procedure.

2. Study Area

The study area is greater Yangon city, a major business center of Myanmar located in Southeast
Asia. Every day, approximately six million commuters are moving in the city. In 2014, the population
of Yangon Division was 7,360,703 and the urban population was 5,160,512 [29] (Figure 1). Yangon city
has a major development plan to improve the current public bus system and many housing projects,
including new urban mass rapid transit lines into central Yangon [30].
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Figure 1. Yangon city road network patterns (left) and census population in 2014 (right).. 
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Myanma Posts and Telecommunications’ (MPT) call-detail record data were used in this study, 
along with census and road network data. Table 1 shows the list of data, sources, attribute 
information, and the purpose of its use in the study. 
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Figure 1. Yangon city road network patterns (left) and census population in 2014 (right).

3. List of Data

Myanma Posts and Telecommunications’ (MPT) call-detail record data were used in this study,
along with census and road network data. Table 1 shows the list of data, sources, attribute information,
and the purpose of its use in the study.

Table 1. List of data, source, attribute information, and purposes. OD—origin-and-destination.

Dataset
Name Data Source Acquisition Date Attribute Information Purpose

MPT CDR

Myanma Posts and
Telecommunications
(MPT) call-detail
records (CDR) for
Myanmar

1 December 2015 to
7 December 2015

CDR for both voice and data,
including text messages
Attributes:

• Subscriber ID
• Event ID
• Site ID
• Start Time
• Duration
• Download
• Upload

To generate OD
pairs for
individuals

GIS road
network

Yangon City
Development
Committee (YCDC)

2013 Road names, type, length, etc.
To compute trip
distance, speed,
and direction

National
census

Myanmar
Information
Management Unit
(MIMU)

2014

• Demographic data by
township, state,
and division.

Attributes:
male, female, and total

To compute
home-based
magnification
factor (h-MF)

JICA
Transport
Surveys
Report

Japan International
Cooperation Agency
(JICA)

Transport surveys
conducted between
February 2013 and
August 2013

• Traffic volume of major
roads by vehicle type

• Number of passengers of
public transport (bus, ferry,
and railway)

• Trip patterns by
transport modes

• Number of users by parking

Result
validation
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4. Methodology

4.1. Research Flow

In this research, we used one-week MPT mobile CDR data to extract OD trips at one-hour intervals
from 06:00 to 21:00. Later, these OD pairs were used to compute individual travel distance, duration,
speed, and direction, based on GIS road network data models. Finally, we used these data to generate
link population and flow directions for each road link (edge) by aggregating the total number of mobile
users with their magnification factors. In this research, CDR data processing has done by BigGIS-RTX
research toolbox [31]. Figure 2 gives an overview of this research.
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4.2. MPT CDR Data Preprocessing

We used the anonymized subscriber ID from mobile CDR data obtained from MPT for a seven-day
period (1 December 2015–7 December 2015), for the whole country. MPT owned 46% of the market
share in 2015 [32], along with Telenor, Ooredoo, and other providers. MPT had 20 million subscribers
in May 2016 [33], which represents 40% of the national population. MPT is a state-owned enterprise in
Myanmar, and is under the supervision of the Ministry of Transport and Communications; it operates a
nationwide network infrastructure, with the widest 3G mobile network coverage throughout Myanmar,
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recorded at 95% in March 2016. This includes both voice and data (Figure 3) with encrypted SIM card
ID, Event Code, Call Time, Call Duration, Upload Data Size, and Download Data Size. Because of
the nature of the big data collection system, preprocessing steps are required to use these data in this
study, such as removing empty call durations and records; formatting the strings; and converting some
numerical values, such as site ID, into strings to avoid manipulation during the process. In this dataset,
the number of voice users was larger than that of data users.
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4.3. Home User-Based CDR Data Magnification Factor

Here, we introduced the home-based magnification factor (h-MF) to obtain the actual population
from mobile users. The computation of h-MF has three steps. First, find each person’s home
location Cell-ID and sum the total persons by Cell-ID called Cell-ID home users. Second, find the
Cell-ID disaggregated census population based on Cell-ID home users. Third, compute the Cell-ID
magnification factor and assign to individual persons (person ID (PID)) who belong to this Cell-ID.

First, we found each person’s home location Cell-ID, which was extracted from seven-day CDR
data calls between 20:00 and 07:00, based on the assumption that users stay at home (Figure 4a).
After that, we found each person’s maximum call frequency of Cell-ID (Figure 4b) and assumed that
this Cell-ID was the person’s home location. In this step, we obtained Cell-ID total home users and its
belonging persons (PIDs; Figure 4c).

Second, we found the Cell-ID disaggregated census population, based on census population and
Cell-ID home users obtained from the previous step. Generally, the census population was available by
township or block with the aggregated population. We wanted to disaggregate census population into
the Cell-ID population. Equation (1) (Figure 4d) was used to disaggregate census population, based
on Cell-ID home users. This equation was modified from our previous study, building population
estimation in GIS [34].

Third, we computed individual Cell-ID h-MF using Equation (2). However, one-week CDR data
could not obtain all home users in the dataset, known as unknown home users. Some subscribers
did not make any calls between 20:00 and 07:00 within a seven-day period. In this case, we used the
default value, which was calculated by subtracting the total magnified population from the country
population and dividing by unknown home users (Equation (3) in Figure 4). We found that 20% of the
PIDs should be assigned a default magnification factor for the whole country. Finally, Cell-ID h-MF
was assigned to its home users acquired in the first step. Therefore, the MF is fully synchronized with
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human mobility; wherever an individual goes, their MF will follow them. The total population can be
obtained by summing all MFs in an area (Figure 4e).
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Figure 4. Graphical illustration of home-based magnification factor, link counts, population, and
flow direction computational steps. (a) Home user extraction; (b) Finding PID with maximum call
frequencies; (c) Counting total home users by Cell-ID; (d) Disaggregation of Cell-ID population with
its home users; (e) Illustration of link counts, population and flow directions computation.

4.4. Hourly Link Population and Flow Directions

The following steps were performed to achieve link population and flow directions.
Moving cell tower locations to the nearest road nodes: If the road link was too long, curved, or twisted,

measurement of direction could vary depending on the location of the start and endpoints on the link
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(Figure 5a). To start every trip at the nearest road node, we moved all Cell-ID locations to the nearest
road nodes (Figure 5b). Therefore, each road link could have only two opposite directional values,
such as east or west, north or south, northeast or southwest, and southeast or northwest. Later, we
grouped them into two categories, based on these two opposite directions, to determine the majority
and minority flow directions.

Extract hourly OD pairs: After preprocessing was completed, we started to extract OD pairs for
individual persons by pairing their successive calls or data usages (Figure 5c). During this process, we
also computed several trips, duration, distance, and speed of each pair for further travel behavior and
mode-choice analysis. In this process, we omitted the points where the user stayed at the same location
(if successive calls or data usages are the same Cell-ID or coordinates), also known as stay points.
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Figure 5. Moving cell tower location to nearest road node to synchronize the directions and shortest
path analysis. (a) Before moving Cell-ID; (b) After moving Cell-ID; (c) find the shortest path between
two successive calls.

Compute link population and directions: In this step, we used a GIS road network data model to
compute route paths and directions between each OD pair (i.e., start Cell-ID x, y; and end Cell-ID
x, y), based on shortest-path analysis using the well-known modified Dijstra algorithm. Direction
was computed between two start and end nodes by the angle between 0◦ and 360◦, and grouped
into eight categories, namely, north, northeast, east, southeast, south, southwest, west, and northwest.
We counted unique PIDs by each road link and summed their magnification factor (h-MF) for link
population to gain the actual population from mobile users (Figure 4e). Link population and flow
directions were grouped into two opposite directions (i.e., east or west, north or south, northeast or
southwest, etc.) to determine the majority flow direction at specific time intervals.

5. Results and Discussion

The final goal of this research was to produce hourly link population and flow direction maps
to use in various urban and transport planning projects. Figures 6 and 7 show the flow magnitude
by line thickness (i.e., number of people) by each road link in the morning, 06:00–07:00, and evening,
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17:00–18:00. According to the map, in the morning, high magnitude links were found in many rural
areas where people are entering the central business area (Figure 6), and in the evening, high magnitude
links were found in downtown areas, especially bus station centers, where people are departing for
various regions (Figure 7).

We can also visualize the link flow directions for both roadsides (Figures 8 and 9). The arrow
direction is the majority people-flow direction from two opposite directions. For example, if the road
link has 369 southbound travelers and 287 northbound, the direction arrow will be headed south
(Figure 10a). The hourly link people-flow dataset can generate an hourly profile line with estimated
population number for both directions at specific points on the map (Figure 10b). Later, we will build a
Web-GIS for geovisualization by providing interactive mapping and spatial decision-making functions
for the city and urban transport planners, policy makers, and other spatial information users.

Result validation for dynamic population estimation is a considerable challenge for many
researchers, because human mobility changes over space and time. Because there is no single
population estimation model to predict an accurate population in a quantitative approach, here, we
used a qualitative approach (visual interpretation) rather than a quantitative approach. The result was
validated by counting moving vehicles in each direction at specific points (Figure 10c). We also used
a web-based, real-time smartphone geospatial data collection system [35] to collect some passenger
counts at every bus stop on selected routes to measure people-flow patterns along the bus route.
The people-flow magnitude and direction of this study is directly proportional to the traffic volume
and directional data, which we collected at the ground. Moreover, transport surveys conducted in
2013 by Japan International Cooperation Agency (JICA) data also helped to validate the results by
comparing traffic volume with link population in specific intersections and lanes.
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6. Conclusions

We used one-week mobile CDRs to generate hourly OD pairs of individuals and found the
shortest paths between the pairs. Here, we introduced home-based magnification factors to estimate
actual population scaling by number of mobile home users and disaggregated census population of
each base transceiver station (BTS). We computed the link population and flow directions for the whole
city, which allowed visualizing detailed movement of people inside the city at one-hour intervals.
Moreover, using Web-GIS, we delivered link population and flow-direction information to online
geospatial information users to perform additional tasks, such as generating hourly population profile
lines at specific points or links and identifying average population by user-defined areas, as well as
other digital cartographic functions in their decision-making processes. Owing to some limitations in
researching with CDR data, vehicle- or people-flow mapping for the whole city was limited at the time
and required additional ground-truth data collection and an advanced wireless monitoring system
to predict these for the whole city. Although CDR has some limitations in human mobility studies
(for example, mobility depends fully on their call and data usage activities, actual traveling paths
may differ from shortest paths in GIS analysis, and cell tower locational information is sometimes
inaccurate owing to load balancing), CDR remains one of the data sources for a massive number of
human mobility patterns inside the city or across the country. We hope that hourly link population
and flow direction along with other information generated from this study, such as the number of trips
per person, average travel distance, duration, speed, and mode choice, will be used in the Yangon City
Development Planning process in the near future.
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