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Abstract. Southeast Asia (SEA) has the largest mangrove forest area in the world, which
plays an important role in the global carbon cycle and is helping to mitigate climate change.
In order to manage the mangrove forests in SEA, their total biomass needs to be determined.
However, development of a biomass dataset based on field survey is time consuming.
An aboveground biomass (AGB) dataset of mangrove forests was developed for SEA based
on ALOS PALSAR 25-m mosaic. Specifically, ALOS-PALSAR 25-m images were first
retrieved for SEA from the Kyoto and Carbon Initiative projects and then converted from
a digital number to a normalized radar cross-section format in decibels. Samples of mangrove
forests in SEAwere collected as regions of interest from ALOS PALSAR data based on visual
interpretation using Landsat data and Google Earth imagery. A rule-based classification
method based on mangrove backscattering characteristics was then used to classify mangroves
and nonmangroves in the region. Subsequently, an empirical model was adopted to estimate
the AGB of the mangrove forests and an AGB dataset was developed. The results indicate
that the spatial distribution of mangrove forests over SEA is 5.1 million hectares, and the
estimated average AGB is 140.5� 136.1 Mg∕ha. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole
or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.13
.044519]
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1 Introduction

Mangroves are a unique and complex major component of coastal zones in the tropics and sub-
tropics. They represent the transitional ecosystem at the confluence of sea, land, and fresh water.
The main components of their vegetation are generally evergreen trees or shrubs that grow along
the coastlines, estuaries, brackish water, or deltas.1 Mangroves provide important products and
various ecosystem services.2 They not only play an important role in the sustainability of coastal
ecosystems but also provide important socioeconomic and cultural benefits for coastal commun-
ities.1 They are also known as the most intense coastal carbon absorbers in the world and play a
central and growing role in the global carbon cycle.3 According to Donato et al.,4 the amount of
carbon storage per unit area of mangrove forests is five times larger than that estimated for tem-
perate, boreal, and tropical terrestrial forests. The high growth rates of trees and plants, anaerobic
soils, and stagnant water that can retard decomposition of biomass enable mangrove forests to
store a large amount of carbon over the long term.5

According to Alongi and Dixon,6 mangroves are very productive ecosystems that have pri-
mary production levels equivalent to moist tropical forests and coral reefs. Mangroves only

*Address all correspondence to Soni Darmawan, E-mail: soni_darmawan@itenas.ac.id

Journal of Applied Remote Sensing 044519-1 Oct–Dec 2019 • Vol. 13(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 25 Dec 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1117/1.JRS.13.044519
https://doi.org/10.1117/1.JRS.13.044519
https://doi.org/10.1117/1.JRS.13.044519
https://doi.org/10.1117/1.JRS.13.044519
https://doi.org/10.1117/1.JRS.13.044519
mailto:soni_darmawan@itenas.ac.id
mailto:soni_darmawan@itenas.ac.id
mailto:soni_darmawan@itenas.ac.id


occupy 0.5% of the global coastal area, but they contribute 10% to 15% (24 TgC y−1) of coastal
sediment carbon storage and export 10% to 11% of particulate terrestrial carbon to the sea.
Currently, their contribution to carbon sequestration is one of the important ways for conserva-
tion and restoration, and it further helps to reduce the greenhouse effect. This shows that man-
groves play an important role in global climate change mitigation. In order to acquire and build
strong awareness of global carbon conditions and the impacts of diminishing mangrove forests
on climate change, it is very important to assess and quantify the spatial distribution of mangrove
forests and carbon stocks, as well as the emission factors of greenhouse gases emitted from the
major land use activities in mangrove forests. However, most countries, especially in Southeast
Asia (SEA), do not have enough information about the total quantity of their mangrove
biomass.5,7

From a global perspective, SEA has the largest mangrove area in the world estimated at more
than 6.8 million hectares or around 34% to 42% of the total area of mangrove forests in the
world.2 Mangrove forests in SEA are the most diverse in the world8 but have been suffering
from human interference in destructive ways due to conversion of mangrove areas for agricul-
ture, tourism, and housing.9 According to Giri et al.,10 the world’s mangrove forests are currently
estimated to have been reduced by 50% from their previous state and, estimating by their current
reduction rate, 30% to 40% of coastal wetlands and 100% of mangrove forests could be lost in
the next 100 years if there is no improved management to conserve them. It is strongly recom-
mended that mangrove biomass be mapped and monitored immediately. However, conducting
field surveys for mangrove biomass and its productivity in the area has proved to be very difficult
as it is expensive and time consuming by nature, caused by muddy soil conditions, the weight of
wood,11,12 the vast area to cover, and tidal influences.

Remote sensing has been widely proven to be a fast, cost-effective, and efficient method for
monitoring and mapping the highly spatial distribution and biomass of mangrove forests as well
as their disturbance on regional and global scales.12,13 Optical imagery and synthetic aperture
radar (SAR) data have the potential to predict the biomass of tropical forests.14 However, accord-
ing to Häme et al.,14 the depth and thickness of the irregular atmospheric conditions in the area of
interest make atmospheric correction of optical images difficult. On the other hand, radiometric
correction of the topography of SAR data will require a very accurate digital elevation model
unless the study location is relatively flat. In particular, in tropical areas with prevalent cloud
cover, SAR data are better than optical data for multitemporal acquisition.

According to Henderson and Lewis,15 although sensors in the optical range of the electro-
magnetic spectrum have received the greatest attention and have been widely used, considerable
effort has also been invested in the use of radar sensors. Backscatter radar is very sensitive to the
dielectric properties (soil moisture and vegetation) and attributes of the geometric conditions
(surface roughness) of objects on the surface of Earth.16 In many regions of the world (e.g.,
areas covered by clouds and/or lacking light), radar is the only sensor that can provide consistent
and periodic data in a reliable manner. A radar sensor can obtain information in the electro-
magnetic spectrum of the bands K, X, C, L, and P (different wavelengths) with polarizations
of Horizontal to Horizontal (HH), Vertical to Vertical (VV), Horizontal to Vertical (HV), or
Vertical to Horizontal (VH), which have varying ranges and azimuth resolutions. Each of these
wavelengths has unique characteristics related to reflection from forest stands. The X band inter-
acts only with leaves and canopy cover surfaces; hence, it is very suited for information on the
surface layer of the tree canopy. The C band can penetrate through the leaves and spread to small
branches and other underlying objects. The L band, which has a higher penetration capability,
can penetrate the surface layer and spread to the stems and main branches.17 The P band has the
greatest penetration capability and can penetrate into the canopy covers. Therefore, backscatters
from the L and P bands are the parameters most associated with the biophysical parameters of
trees and are predominantly used for studies related to forest biomass.18 Long-wavelength radar
sensors such as L and P bands have both the advantage of being very sensitive to forest biomass
and the potential for observation with high spatial and temporal resolution for estimating and
monitoring biomass.19–21

The launch of the Japanese Space Exploration Agency’s (JAXA) Advanced Land Observing
Satellite (ALOS) Phased Arrayed L-band SAR (PALSAR) in 2006, therefore, represented a
milestone in the global observation, characterization, mapping, and monitoring of mangroves
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over a larger area. ALOS PALSAR has been proven to have the potential to estimate the above-
ground biomass (AGB) of mangrove forests.11,22,23–26 Many researchers have tried to identify the
baseline mangrove forest in regional-global areas.27–29 However, references for estimating the
biomass of mangrove forests in regional-global areas are lacking, which is both a challenge and
an opportunity.30 This study was conducted with the objective of developing an aboveground
mangrove forests biomass dataset for SEA based on the ALOS PALSAR 25-m mosaic.

2 Methodology

The methodology used in this study consisted of several steps. First, the study area was circum-
scribed and primary and secondary data were collected. Primary data were taken from ALOS
PALSAR, and secondary data were obtained from land cover maps, Landsat image data, and
high-resolution image data obtained from Google Earth. Data processing involved conversion of
digital numbers (DN) to normalization of radar cross sections (NRCS). Training samples of the
mangrove forests in the study area were delineated, backscattering characterization was per-
formed by calculating the mean and standard deviation, mangrove forests were classified based
on backscattering characterization, and the AGB of mangrove forests in SEA was estimated
based on an empirical model.

2.1 Study Site

According to Giesen et al.,2 the mangrove forests in SEA spread from the Irrawaddy delta in
northwest Myanmar throughout the coasts of Thailand, Cambodia, and Vietnam, and over the
archipelagos of the Philippine and Indonesian Archipelago from Papua island to Sumatra island.
They cover more than 17,000 islands and stretch more than 6000 km from the east to the west
and about 3500 km from the north to the south of SEA. The most extensive mangrove areas in
SEA are found in Indonesia, followed by Malaysia and Myanmar. In this study, we collected
regions of interest (ROIs) of mangrove forests on 46 sites that spread over SEA as presented in
Fig. 1 and Table 1.

Fig. 1 Study sites based on ALOS PALSAR composite and distribution of 46 sites for collecting
ROIs of mangrove forest.
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Table 1 ROIs on 46 sites of mangrove forest.

No Country/area Coordinate ROIs (pixels)

Myanmar

1. Lay Taung 19°16′N 93°58′E 8.027

2. Meinmahla Kyun-Irrawaddy delta 15°51′N 64°56′E 3.860

3. Tanintttharyi National Park 11°53′N 98°42′E 46.268

Thailand

4. Shi Phang Nga National Park 08°58′N 98°22′E 2.112

5. Phang Nga Ko Sriboya Krabi 08°23′N 98°31′E 6.339

6. Khlong Krabi 07°54′N 99°04′E 1.774

7. Suso Palian Trang 07°11′N 99°39′E 7.968

8. Puyu Mueng Satun 06°40′N 99°56′E 4.833

9. Pak Phanang Fangtawanok 08°25′N 100°10′E 5.217

Malaysia

10. Jebong Matang Perak 04°49′N 100°36′E 14.579

11. Pulau Kelang Selangor 02°59′N 101°18′E 7.923

12. Serkat Johor 01°23′N 103°30′E 3.303

13. Sarikei Sarawak 02°07′N 111°23′E 18.143

14. Pulau Selirong, Brunei 04°50′N 115°07′E 5.120

15. Kota Marudu Sabah 06°33′N 116°46′E 1.200

16. Beluran Sabah 06°14′N 117°36′E 11.049

Cambodia

17. Peam Krasaop Wildlife Sanctuary 11°28′N 103°01′E 3.166

18. Preak Piphot River 10°40′N 103°52′E 1.275

Vietnam

19. Tha
˙
nh An Cần Giò 10°33′N 106°52′E 13.967

20. Giao Thiê
˙
n Giao Thuỷ Nam D̄i

˙
nh 20°13′N 106°31′E 390

21. Thái Thủy Thai Binh 20°34′N 106°36′E 730

22. Móng Cái Quảng Ninh 21°27′N 107°55′E 881

Philippines

23. Siargao island 09°55′N 125°58′E 1.108

24. Santa Margarita Samar 18°21′N 121°35′E 541

25. Abulug Cagayan 18°21′N 121°35′E 970

26. Dinas Zamboanga del Sur 07°34′N 123°22′E 716

Indonesia

27. Langsa Aceh 04°31′N 98°01′E 10.199

28. Bengkalis Riau 02°01′N 101°36′E 14.516
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2.2 Data Collection

We used 25-m resolution PALSAR mosaic data generated by applying a high JAXA processing
and analysis technique to images obtained from the Japanese L-band Synthetic Aperture Radars
(PALSAR and PALSAR-2). Global 25-m resolution PALSAR/PALSAR-2 mosaic is a global
SAR image made by SAR image mosaics of the backscattering coefficient measured by
PALSAR/PALSAR-2. ALOS PALSAR data have been collected as part of the Kyoto and
Carbon Initiative projects. As a result, we obtained a total of 60 ALOS PALSAR mosaic tiles
for the SEA region. For secondary data to support the collection of training samples of mangrove
areas, we used land cover maps from each country and Landsat data as well as high-resolution
image data from Google Earth.

2.3 Preprocessing

The preprocessing focused on converting the HH (Digital Number on Horizontal to Horizontal)
and HV (Digital Number on Horizontal to Vertical) values to NRCS in decibels (dB) (i.e., σ° HH
and σ° HV) using the following equations:31

EQ-TARGET;temp:intralink-;e001;116;137σ°HH ¼ 10 log10ðDN2Þ − CF; (1)

EQ-TARGET;temp:intralink-;e002;116;94σ°HV ¼ 10 log10ðDN2Þ − CF; (2)

where σ° is the backscattering coefficient and CF is the calibration factor. CF is equal to −83 for
both HH and HV.

Table 1 (Continued).

No Country/area Coordinate ROIs (pixels)

29. Indragiri Hilir Riau 00°02′S 103°29′E 40.262

30. Banyuasin South Sumatera 01°58′S 104°32′E 74.398

31. Pontianak West Kalimantan 00°39′S 109°28′E 36.615

32. Kotabaru South Kalimantan 02°55′S 116°05′E 25.237

33. Kutai Kartanegara East Kalimantan 01°02′S 116°42′E 16.728

34. Berau East Kalimantan 02°04′N 117°39′E 33.413

35. Nunukan East Kalimatan 04°08′N 117°20′E 33.699

36. Subang West Java 06°13′S 107°45′E 25

37. Cilacap Central Java 07°41′S 108°54′E 9.437

38. Badung Bali 08°43′S 115°11′E 1.275

39. Bombana Southeast Sulawesi 04°31′S 122°5′E 7.975

40. Muna Southeast Sulawesi 04°44′S 123°4′E 14.111

41. Sorong West Papua 01°21′S 131°34′E 38.666

42. Teluk Bintuni Papua 02°9′S 133°36′E 95.396

43. Teluk Bintuni Papua 02°34′S 133°47′E 118.867

44. Waropen Papua 05°06′S 137°31′E 256.657

45. Asmat Papua 01°48′S 137°21′E 91.473

46. Merauke Papua 08°15′S 138°54′E 34.947
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2.4 Characterization

We collected mangrove samples data for the ROIs throughout the SEA region on ALOS PALSAR
data based on visual interpretation using Landsat data and Google Earth images. As many as 46
ROIs of mangrove forests scattered in the SEA region were collected. The size of each ROI differed
for each area of mangroves, as it depends on the size of the mangrove area in each region. After the
ROI samples were obtained and the mean and standard deviation of the backscatter value for each
sample were calculated. The equations for the mean and standard deviation are as follows:

EQ-TARGET;temp:intralink-;e003;116;644μX ¼ X ¼ 1

n

Xn
i¼1

Xi; (3)

EQ-TARGET;temp:intralink-;e004;116;588σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðXi − XÞ2;
s

(4)

where n is the number of samples taken, Xi is the value of the sample, and X is the average of
the samples.

2.5 Classification

The classification of mangrove forests was performed based on the characteristics of the man-
grove backscatter in each training sample. We used a rule-based classification method based on
the mangrove backscattering characteristics to classify mangrove and nonmangrove areas in the
region. The main parameters used in this rule-based classification were the mean and standard
deviation of the backscatter value image of ALOS PALSAR. All pixels in the mangrove areas
were identified using the following rule-based classification algorithm:12

EQ-TARGET;temp:intralink-;e005;116;427If μ_i-σ_ij ≤ band_i ≤ μ_iþ σ_ij then band_i ¼ 1; otherwise band_i ¼ 0; (5)

where μ and σ represent the mean and standard deviation of the grouped pixel samples (ROIs)
from the sample data, respectively, i represents the band number of ALOS PALSAR, and
j represents the positive real number of the selected standard deviation. The output was a binary
image consisting of “mangrove” and “nonmangrove.”

2.6 Estimation of Aboveground Biomass

The literature on estimation of the AGB of mangrove forests using PALSAR data is very small.
Only a few studies11,22–24 have established empirical relationships between L-band backscatter
and the AGB of mangrove forests. The most significant difference between Takeuchi’s and
Hamdan’s empirical relationships models is that Takeuchi’s empirical relationships model uses
conversion through general allometric height-biomass relations. We refer to this model as the
indirect model. The empirical model is expressed as follows:11

EQ-TARGET;temp:intralink-;e006;116;243HH ðσ°Þ ¼ 3.6 ln ðtree heightÞ − 23.7; (6)

EQ-TARGET;temp:intralink-;e007;116;204HV ðσ°Þ ¼ 4.4 ln ðtree heightÞ − 24.9; (7)

EQ-TARGET;temp:intralink-;e008;116;182tree height ¼ 2.8 lnðDBHÞ þ 0.4; (8)

EQ-TARGET;temp:intralink-;e009;116;162AGB ¼ 0.25DBH2.46; (9)

where DBH is the diameter at breast height and AGB is the aboveground biomass. In contrast,
Hamdan et al.23 directly related the backscatter value to the field biomass measurement, and thus
we refer to it as the direct model. The empirical model is presented as follows:

EQ-TARGET;temp:intralink-;e010;116;117HH ðσ°Þ ¼ 0.472 lnðAGBÞ − 12.326; (10)

EQ-TARGET;temp:intralink-;e011;116;76HV ðσ°Þ ¼ 0.800 lnðAGBÞ − 19.305: (11)
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3 Results and Discussion

3.1 Backscattering Characteristics of Mangrove Forests in Southeast Asia

We collected ALOS PALSAR data for the SEA region and determined the training samples as
ROIs. Preprocessing was conducted by converting DN values to NRCS using Eqs. (1) and (2).
In addition, the ROIs of 46 training samples were calculated to determine the backscattering
characteristics of mangroves in the forms of mean and standard deviation values using
Eqs. (3) and (4). The mean and standard deviations for each of the 46 ROIs can be seen in
Fig. 2. Figure 2 shows the characterization of the backscattering coefficient of mangrove forests
for the polarizations of HH and HV. The backscattering values of mangrove forests based on
the HH polarization ranged from −10.88 to −6.65 dB, whereas the values based on the HV
polarization were within the range −16.49 to −13.26 dB.32

Based on Fig. 2, each mangrove forest type has a wide range of backscattering values. The
value depends on the physical and geometric conditions of the mangrove trees, as well as on
environmental conditions such as weather dynamics, moisture, and the topography and altitude
of tides.33 The backscatter value also depends on a specific backscatter signal (e.g., radar cal-
ibration and orthorectification),34,35 which is affected by the dielectric properties of the vegeta-
tion and ground surface.

3.2 Spatial Distribution of Mangrove Forests Based on ALOS PALSAR

We classified mangrove forests based on their backscattering characteristics and topography
data. The classification was enhanced by visual interpretation using Landsat images and
Google Earth imagery as reference data. In this case, the classification method used rule-based
classification as defined by Eq. (5). We classified mangrove forests and nonmangrove forests on
an area by area basis. The parameters used in the rule-based classification were HH, HV, and
topography data. To determine the threshold value, the mean and standard deviation of the back-
scattering values of HH and HV were used. The threshold values of the backscattering on HH
and HV can be seen in Table 2.

Using rule-based classification, we determined the spatial distribution of the mangrove for-
ests in the SEA region (Fig. 3). The area of the mangrove forests in the SEA region was calcu-
lated as ∼5;098;834 ha with an overall accuracy of 82% (Table 3). The latter was done based on

Fig. 2 Means and standard deviations of backscattering values of mangrove forests based on
ALOS PALSAR polarization on (a) HH and (b) HV.
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Table 2 Threshold values of mangrove forests for HH and HV.

Area

Threshold values of backscattering ALOS PALSAR 25-m
resolutions (in dB)

HH HV

Myanmar −9.92 < mangrove < −5.07 −17.23 < mangrove < −11.72

Thailand −12.29 < mangrove < −7.92 −18.14 < mangrove < −13.66

Malaysia −11.76 < mangrove < −7.06 −17.20 < mangrove < −12.61

Cambodia −10.28 < mangrove < −5.09 −16.64 < mangrove < −11.58

Vietnam −10.50 < mangrove < −7.42 −19.03 < mangrove < −15.46

Philippines −10.88 < mangrove < −6.50 −17.08 < mangrove < −13.02

Indonesia −12.64 < mangrove < −5.37 −18.81 < mangrove < −11.47

Fig. 3 Spatial distribution of mangrove forests in Southeast Asia.

Table 3 Overall accuracy.

Reference data

Mangrove Nonmangrove Total User’s accuracy

Image classified Mangrove 1,197,076 211,550 1,408,626 84.98%

Nonmangrove 201,370 685,374 886,744 77.29%

Total 1,398,446 896,924 2,295,370

Producer’s accuracy 85.60% 76.41%

Overall accuracy = 82.01%
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a confusion matrix, which takes advantage of ground truth derived from some reference data
such as land use and land cover maps and visual interpretation from Landsat and Google Earth.
The estimated areas of mangrove forests in each country in comparison with other studies are
presented in Table 4. According to the table, there are differences in the large areas of mangrove
forests determined by this study and the other studies. These differences arise from the different
methods employed to estimate the large areas of mangrove forests; the other studies estimated
the large areas of mangrove forests using data derived from a statistical log book, which is an old
data version.

3.3 Estimation of Aboveground Biomass of Mangrove Forests

We applied two models to estimate the AGB of mangrove forests: the indirect model
[Eqs. (6)–(9)] and the direct model [Eqs. (10) and (11)]. According to Sun et al.,42 HV polari-
zation of the RADAR data is the most sensitive for estimation of AGB. We estimated the average
AGB of mangrove forests in the SEA region as 140.5� 136.1 Mg∕ha. Some plots of the spatial
distribution of the AGB of mangrove forests are presented in Fig. 4. However, on the low and flat
topography, the backscatter value of mangrove forest is affected by tidal height. The deviation of
backscatter value on the low and flat topography is around 1.6 dB for HV.33 This study cannot
identify information of tidal height because data are given from global 25-m resolution PALSAR
and PALSAR-2 mosaics, so in this case, the AGB of mangrove forest that is estimated can be
low or high.

Since the lack of ground measurement of the ABG of the mangrove forest on overall SEA
still needs further research to validate our results, we have compared our results to those obtained
by other studies (Table 5 and Fig. 5). We observed that the results based on the direct model are
closer to those estimated by other studies than the indirect model. However, the direct model has
a coefficient of determination (R2) of 0.427 with a residual error of 61.32 Mg∕ha.

According to Suzuki et al.,48 one limitation of SAR in estimating AGB is that the backscatter
intensity becomes saturated when the AGB volume exceeds a certain critical value. For example,
estimation of the AGB of the mangrove forests in Matang Malaysia, where the AGB

< 100 Mg∕ha, gives the highest coefficient of determination (R2) and the smallest root mean

Table 4 Sizes of mangrove forest areas in comparison with other studies.

No. Area

Mangrove area (ha)

This study Other studies

1. Brunei 5871 17,100 in 199236

2. Cambodia 77,432 72,835 in 1997,36 83,600 in 200236

3. Indonesia 3,280,031 3,493,110 in 198836

3,244,018 in 200937

4. Malaysia 587,613 587,269 in 199536

564,606 in 200338

5. Myanmar 486,840 452,492 in 199636

6. Philippines 266,170 127,610 in 199036

256.185 in 200039

7. Thailand 233,334 244,085 in 200036

228.158 ha in 200740

8. Vietnam 159,901 252,500 in 198336

157,000 in 200541

Darmawan et al.: Development of aboveground mangrove forests’ biomass dataset. . .

Journal of Applied Remote Sensing 044519-9 Oct–Dec 2019 • Vol. 13(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 25 Dec 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



square error (RMSE), whereas an AGB > 100 Mg∕ha has a lower R2 and a higher RMSE.23

In addition, the saturation level of AGB for Sonneratia caseolaris and Kandelia obovata is
above 100 Mg∕ha.23 According to Ghasemi et al.,49 the saturation problem can be solved by
applying an interferometry technique. However, this method has not been widely tested; thus,
it is still not clear whether it can be used for AGB estimation of all types of mangrove forests.

We also have compared our result with Landsat data, where the actual optical images of the
Landsat data with textural and spectral characteristics of the canopy and leaves are the main
features used to distinguish among mangrove communities.35,50 According to Fig. 6 the results
of the classification of mangroves and nonmangroves on ALOS PALSAR imagery are almost the
same as those produced by Landsat imagery. However, in this study, not only can be classified
mangrove and non-mangrove, but also we have estimated above ground biomass of mangrove
forest.

4 Conclusions

In this study, an AGB dataset of mangrove forests in SEAwas developed. The spatial distribution
of the mangrove forests in SEAwas found to be 5.1 million ha with an overall accuracy of 82%.
The estimated average AGB of the mangrove forests in SEA was found to be 140.5�
136.1 Mg∕ha. The direct model was also determined to be more accurate for estimation of the
AGB of mangrove forests than the indirect model. However, saturation in estimating AGB needs

Fig. 4 Spatial distribution of the AGB of mangrove forests in the SEA region; (a) Suso Palian
region, Thailand, (b) Jebong Perak region, Malaysia, (c) PeamKrasaop Wildlife Sanctuary,
Cambodia, and (d) ThanhAn Can Gio, Vietnam.
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to be reduced by integrating multisource data, including different wavelengths for optical data
and microwaves. Thus, in future studies, development of more appropriate procedures and
approaches is still required to reduce uncertainty and also the conducting and collecting of field
survey measurements is required for validation.

Table 5 Comparison of AGB estimation of mangrove forests using the indirect and direct models
with other studies.

No. Location Major species

Indirect
model
(Mg/ha)

Direct
model
(Mg/ha)

Other
studies
(Mg/ha)

1. Perak, Malaysia Rhizophora apiculata 250.5 101.72 99.423

2. Aceh, Indonesia — 96.5 46.8 11.6843

3. Chumpon, Thailand Rhizophora apiculata 807.4 231.4 2166

4. Pang-nga, Thailand Mix 494.1 166.3 10844

5. Kuala Selangor, Malaysia Bruguiera parviflora 411.33 146.3 144.4745

6. MuiCamau, Vietnam Avicennia alba
Rhizophora apiculata

167.2 74.2 90.2þ 15.846

7. West Kalimantan, Indonesia Avicennia marina
Rhizophora apiculata
Rhizophora stylosa
Rhizophora alba
Rhizophora mucronata
Bruguiera gymnorrhiza
Xylocarpus granatum

467.1 159.9 159.1þ 69.55

8. Papua, Indonesia Avicennia marina
Rhizophora apiculata
Rhizophora stylosa
Rhizophora alba
Rhizophora mucronata
Bruguiera gymnorrhiza
Xylocarpus granatum

924.3 252.56 213.8þ 129.85

9. The Philippines Avicennia officinalis 1.342 319.3 297.247

Fig. 5 Comparison of AGB derived from backscattering of HV on ALOS PALSAR.
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