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This research investigated the ability of the Advanced Land Observing Satellite
(ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) to map
tropical forest in central Sumatra, Indonesia. The study used PALSAR 50 m res-
olution orthorectified HH and HV data. As land-cover discrimination is difficult
with only two bands (HH and HV), we added textures as additional information for
classification. We calculated both first- and second-order texture features and stud-
ied the effects of texture window size, quantization scale and displacement length
on discrimination capability. We found that rescaling to a lower number of grey
levels (8 or 16) improved discrimination capability and that equal probability quan-
tization was more effective than uniform quantization. Increasing displacement
tended to reduce the discrimination capability. Low spatial resolution increased
the discrimination capability because low spatial resolution features reduce the
effects of noise. A larger number of features also improved discrimination capa-
bility. However, the amount of improvement depended on the window size. We
used the optimum combination of backscatter amplitude and textures as input data
into a supervised multi-resolution maximum likelihood classification. We found
that including texture information improved the overall classification accuracy by
10%. However, there was significant confusion between natural forest and acacia
plantations, as well as between oil palm and clear cuts, presumably because the
backscatter and texture of these class pairs are very similar.

1. Introduction

Tropical forests account for 18% of annual CO2 emissions. CO2 is released due to
deforestation and degradation following fire, resource extraction and draining of
peat lands (IPCC 2007). Failure to reduce tropical deforestation could result in an
additional release of 80–130 Gt of carbon into the atmosphere by 2100, which is com-
parable to all the carbon released during the last decade through the combustion of
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7728 P. Rakwatin et al.

global fossil fuels (Gaveau et al. 2009). For this reason, the conservation of tropical
forest is critical to mitigate climate change.

Accurate inventories and monitoring of forest areas are critical for estimating CO2

emissions. Remote sensing is probably the most reliable measurement tool for accurate
forest monitoring over large areas. Optical remote sensing, with its capabilities of large
area coverage and frequent revisits, provides a viable means to map forest coverage
areas at local and regional levels. However, forest mapping with such imagery is often
challenging in tropical regions, because in some seasons, these regions have frequent
cloud cover and heavy precipitation. It is often difficult and sometimes impossible to
acquire cloud-free images.

To avoid cloud effects, researchers have been using Synthetic Aperture Radar (SAR)
data. SAR provides a promising alternative because it can penetrate clouds, as well as
smoke and haze from fires. The Advanced Land Observing Satellite (ALOS) carries
an SAR sensor called Phased Array L-band Synthetic Aperture Radar (PALSAR).
ALOS was launched on 24 January 2006. PALSAR is expected to play a key role
in estimating the loss of the forest-cover and land-cover change. The L-band SAR
sensor penetrates the above-ground biomass of tree trunks and canopies, indepen-
dent of atmospheric conditions and observation time (day vs night) (Rosenqvist et al.
2007).

This study examines the potential of ALOS PALSAR 50 m spatial resolution data
at HH and HV polarizations for mapping tropical rain forest in central Sumatra,
Indonesia. In cooperation with the World Wildlife Fund (WWF), we selected Riau
province, in central Sumatra, as a test site. Riau hosts some of the world’s most
biodiverse ecosystems. The province is covered by vast peatlands estimated to hold
Indonesia’s largest store of carbon. However, Riau has been under serious threat
because of rapid large-scale deforestation (Uryu et al. 2008).

As the two bands of ALOS PALSAR were expected to provide limited ability to
differentiate land cover, texture was used as an additional information source for clas-
sifying tropical rain forest (Nyoungui et al. 2002, Podest and Saatchi 2002). A large
number of techniques for texture analysis have been investigated for SAR image clas-
sification. The two methods considered in this study are the first- and second-order
texture statistics (Haralick 1979). This study focuses on comparing simple first- and
second-order textures at multiple scales in order to evaluate their contributions to
land-cover classification accuracy.

Although texture analysis in general has been widely investigated, there are some
studies that have examined how various parameters may affect the ability of tex-
ture features to discriminate land cover (Van Der Sanden 1997, Podest and Saatchi
2002, Kayitakire et al. 2006, Pacifici et al. 2009, Sarker and Nichol 2011). Therefore,
we investigated the effects of texture window size, quantization scales and displace-
ment length on the ability to discriminate between selected regions of interest. In this
research, various combinations of texture features were selected using transformed
divergence (TD) (Swain and Davis 1978), which calculates the statistical distance
between land-cover classes.

After we investigated the relative efficiency of different textural features and param-
eters, we used principal component analysis (PCA) to integrate the backscattering and
texture features. PCA can reduce the dimensionality of the data while preserving dis-
crimination capability. First, four components from the PCA were used as input into
a maximum likelihood (ML) classifier (Alesheikh and Fard 2007). The results were
compared with an ML classifier based on backscattering information alone.
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ALOS/PALSAR, SAR, land-use classification 7729

2. Study area, data set and evaluation data set

2.1 Study area

Riau province, central Sumatra, Indonesia, was selected as our study area. This
province is rich with natural resources, particularly petroleum, natural gas, oil palm
and fibre plantations. The climate in Riau is equatorial tropical climate, with two
main seasons – the rainy season from November to April and dry season from June to
September. The average temperature is 30◦C during the day and 23◦C at night through-
out the year. Rainfall is between 2000 and 3000 mm/year on average. The province was
once heavily forested lowlands, but as oil palm plantations and logging have become
major industries, it is now losing around 2000 km2 of forest per year. In 2007, the
forest cover had dropped to 27% (or 22 000 km2) from 78% (or 64 000 km2) in 1982.

Riau regularly suffers from smoke and haze due to land-clearing fires for oil palm
plantations during dry seasons. The fires occur because businesses, community coop-
eration units and individual community members slash and burn the natural forest in
order to replace it with oil palm plantation. At present, the deforestation in Riau is
largely driven by industrial plantation companies. Heavy machinery is used to build
roads into the forest and to clear cut the trees. According to Uryu et al. (2008), 29%
of forest cover was cleared for industrial oil palm plantation, whereas 24% was cleared
for industrial pulpwood plantations.

2.2 PALSAR data sets

Two 50 m orthorectified PALSAR data sets were selected within the Riau province
as shown in figure 1. Figure 1(a) shows the 443rd strip image, taken on 28 June 2007.
Figure 1(b) shows the 444th strip image, taken on 30 November 2007. Even though this
research did not consider seasonal difference, it is worth mentioning that the backscat-
tering varies from the maximum to the minimum value, corresponding to the wet and
dry seasons, respectively (Minchella et al. 2009, Tanase et al. 2011). The seasonality
of the data is related to the moisture content. The dual-polarized HH and HV chan-
nels were projected into geographical latitude and longitude coordinates. HH means
that the electromagnetic waves are transmitted as horizontally polarized signals, and
then received as horizontally polarized signals. HV means that the electromagnetic
waves are transmitted as horizontally polarized signals, but then received as vertically
polarized signals. The SAR mosaicking algorithm used in this research was introduced
by Shimada and Otaki (2010) and Shimada (2010). This algorithm can produce large-
scale radiometrically and geometrically calibrated SAR data sets. Slope correction was
applied using the Shuttle Radar Topography Mission (SRTM) 90 m Digital Elevation
Model.

Each site covers about 40 700 km2. These two sites are known for their intensive
land-use change and deforestation. The difference between the two images is in ter-
rain type and scales of plantation. The topography of the 443rd strip area is flat
plain. Agro-industrial companies have plantations over large homogeneous areas. The
444th strip image has rugged terrain where small-scale plantations predominate. In
both images, the main land-cover classes are forest, oil palm, acacia, clear cut and
water. The rest of the area contains primary vegetation that has undergone logging,
secondary growth or different types of cultivated land. Both large- and small-scale
plantations occur throughout the study areas.
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Figure 1. PALSAR 50 m orthorectified mosaic product over the Riau province as colour com-
posites of σ 0

HH (red), σ 0
HV (green) and σ 0

HH (blue). Channels have been stretched for the purpose
of contrast enhancement. Images were acquired on (a) 28 June 2007 (strip 443) and (b) 30
November 2007 (strip 444).

For PALSAR standard products (level 1.5) provided by JAXA, the conversion
between the amplitude (DN) and the normalized radar cross-section in decibel (σ 0)
is given as follows (Shimada et al. 2009).

σ 0 = 10 × log10

〈
DN2〉 + CF, (1)

with the calibration factor (CF), which depends on the process date (in this case, CF
is equal to −83 for both HH and HV).

2.3 Evaluation data set

For ground truth, this study used the 2007 WWF Riau GIS Land Cover Database.
To create this database, WWF experts visually interpreted Landsat ETM images with
the minimum mapping unit fixed at 50 ha. The land-cover areas were digitized at a
scale of 1:90 000. The accuracy of the land-cover map was confirmed by frequent field
verification (Uryu et al. 2008). Both test areas are covered by the same Landsat ETM
image taken on 4 April 2007 (path/row = 126/060).

3. Methods

3.1 Rescaled image creation and region of interest selection

The first step in our analysis created backscatter and texture images at different spatial
resolutions (400 and 200 m). Backscatter (HH/HV) and texture images were com-
puted over window sizes with increasing dyadic scales of 8 × 8 window sizes and 4 × 4
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ALOS/PALSAR, SAR, land-use classification 7731

Table 1. Summary of features.

Quantization

PALSAR channels Method Scale Window size Distance range Features

HH Equal Prob. 8, 16, 32 8 1, 2, 3, 4, 5, 6 7 (First)
HV Uniform 64, 128, 256 4 1, 2 6 (Second)

window sizes, respectively. Average backscattering at 400 and 200 m resolution scale is
expressed by the mean radar cross-section per unit projected area. Each textural fea-
ture image was computed according to the texture feature definitions. For each SAR
image, the normalized cross-section data were rescaled to obtain output images with
256, 128, 64, 32, 16 and 8 quantization levels using both uniform and equal probability
quantizations. We calculated seven first-order texture features for both 400 and 200 m
resolution scales. At 400 m resolution scale, a series of six second-order texture fea-
tures corresponding to displacement lengths ranging from 1 to 6 pixels was computed.
For 200 m resolution scale, we used displacement lengths of 1 and 2. Hence, the total
number of images extracted per region was equal to 1322 features. A summary of all
of the parameters derived in this study is presented in table 1.

Then, we identified the image regions representing the land-cover types studied.
Regions of interest (ROIs) were identified over the whole images. Thirty ROIs were
selected to analyse the discrimination capability of different textural parameters. For
each spatial resolution, the same identified ROIs were used to extract backscattering
values and textural features from the SAR data.

3.2 Extraction of texture features

Texture is defined as spatial variations in the image data. It carries useful informa-
tion for discriminating between classes. Previous research haves shown that texture
information can enhance classification accuracy using SAR data (Podest and Saatchi
2002). There are various methods for extracting textural information from different
order histograms of an image using various degrees of statistics (Milne and Dong
2002). Many applications have adopted methods based on grey-level co-occurrence
matrix (GLCM) or Markov random field models (Clausi and Yue 2004). Grandi et al.
(2009) analysed spatial statistics in SAR data using wavelet frames for characterizing
structural properties of forests. Podest and Saatchi (2002) used various combinations
of texture measurements at different scales to aid the class discrimination. It is gen-
erally assumed that the radar backscattering and textures have normal distributions
(Podest and Saatchi 2002) and can be used as inputs to a supervised ML classification.

In SAR images, however, grey level variations result not only from the spatial vari-
ability in the scattering properties of the object observed (texture) but also from the
presence of speckle. Speckle in SAR images is usually modelled as multiplicative ran-
dom noise. According to Hoekman (1991), speckle variance for logarithmically scaled
radar intensity is independent of the texture variance. The speckle variance depends on
the number of looks only. Logarithmically scaled radar intensity images are therefore
more appropriate for use in textural analysis than either linearly scaled radar ampli-
tude or intensity images. Therefore, this research used logarithmically scaled radar

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

ok
yo

] 
at

 1
7:

01
 1

0 
Ju

ly
 2

01
2 



7732 P. Rakwatin et al.

intensity to measure class discrimination capability and to improve its classification
accuracy.

In this research, several texture features derived from SAR data were investigated to
determine their capability to discriminate classes. The texture features, based on first-
and second-order statistics, are described in §§3.2.2 and 3.2.3.

3.2.1 Quantization schemes. Quantization is an important consideration in the
computation of texture, especially GLCM. This is because the more the grey scale
levels are used, the more the computation cost increases. The quantization method
also has the potential to enhance texture information. This research compares two
quantization schemes: (1) linear or uniform quantization and (2) equal probability
quantization. For linear quantization, the bin size is fixed. A constant quantization
bin size is used no matter what the instantaneous grey level distribution is. In the equal
probability quantization scheme, each bin has a similar probability. Equal probability
quantization has been shown to accurately represent the original image in terms of
GLCM-based textures (Soh and Tsatsoulis 1999).

3.2.2 First-order texture statistics. For each pixel, the texture features are derived
from first-order histograms over the surrounding window. A first-order histogram
describes the frequency of occurrence of each grey level within the window. First-order
histograms have been used extensively to quantify texture in SAR images (Saatchi
et al. 2000, Nyoungui et al. 2002, Podest and Saatchi 2002, Kuplich and Curran
2005). Further descriptions of the textures can be found in Haralick and Shaunmugam
(1973). The seven first-order texture measurements that we used are presented in
table 2. For first-order texture, p(i) is the frequency of grey level i occurring in a pixel
window, whereas Ng represents the quantization level of the image g.

Table 2. Texture measures derived from local statistic, first-order and second-order textures.

Texture type Feature Formula

First-order Mean AVG = μ = ∑Ng
i=1 ip(i)

Variance VAR = σ 2 = 1
Ng

∑Ng
i=1 (i − μ)2

Energy ENG = − ∑Ng
i=1 p(i)2

Entropy ENT = −∑Ng
i=1 p(i) ln p(i)

Coefficient of variation CV = σ

μ

Skewness SKW = 1
σ3

[∑Ng
i=1 (i = μ)3p(i)

]
Kurtosis KUR = 1

σ4

[∑Ng
i=1 (i − μ)4p(i) − 3

]
Second-order Angular second moment ASM = ∑Ng

i=1

∑Ng
j=1 p2(i, j)

Contrast CON = ∑Ng
i=1

∑Ng
j=1 p(i, j)(i − j)2

Correlation COR = ∑Ng
i=1

∑Ng
j=1 p(i, j) (i−mx)(j−my)

sxsy

Entropy ENT = −∑Ng
i=1

∑Ng
j=1 p(i, j) ln p(i, j)

Inverse difference moment IDM = �
Ng
i=1

∑Ng
j=1

p(i,j)
1+(i−j)2

Maximum probability MAX = maxijp(i, j)
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ALOS/PALSAR, SAR, land-use classification 7733

3.2.3 Second-order texture statistics. Second-order texture measurements based on
Haralick’s GLCMs (Haralick and Shaunmugam 1973) consider the distance and
angular spatial relationships between pixels within a window. The GLCM computes
the joint probability of occurrence of pairs of grey levels separated by a given distance
and direction. In this study, GLCM textures were calculated for all directions (omni
directional) for representing variance measured within a window.

A number of statistical measurements that have been used effectively in many SAR
applications (Soh and Tsatsoulis 1999, Kuplich and Curran 2005) can be extracted
from the GLCM. This research used six second-order texture measurements, shown
in table 2. For second-order texture, Ng is the quantization level of the image. p(i, j) is
the relative frequency of grey levels i and j which two neighbouring pixels separated by
a distance of �x columns and �y lines (Kuplich and Curran 2005). For GLCM-based
correlation, the mean (μ) and the standard deviation (s) are derived from

μI =
∑

i
ip(i, ∗) μJ =

∑
j
jp(∗, j)

sI =
√∑

i
(i − μI )2p(i, ∗) sJ =

√∑
j
(j − μJ)2p(∗, j),

(2)

where

p(i, ∗) =
∑

j

p(i, j) p(∗, j) =
∑

i

p(i, j). (3)

3.3 Evaluation of discrimination capability

For each spatial scale, the potential texture features used in the classification were
selected by TD. TD evaluates a feature’s performance in class discrimination by calcu-
lating the statistical distance between each pair of classes included in the image. This
is an indirect, a priori estimate of the probability of correct classification (Swain and
Davis 1978). The TD for class pair (a, b) is given by

TDab = 2000
(

1 − e
−Dab

8

)
, (4)

with

Dab = 1
2

tr
[
(�a − �b)

(
�−1

a − �−1
b

)] + 1
2

tr
[(

�−1
a + �−1

b

)
(Ma − Mb)(Ma − Mb)

T]
,

(5)

where �a and �b are the covariance matrices, �−1
a and �−1

b are the inverse covariance
matrices and Ma and Mb are the mean vectors for classes a and b, respectively. tr is the
trace of the matrix in question (sum of the diagonal elements), whereas T refers to the
transposed matrix. The TD measure is based on the assumption that the classes follow
normal distributions. The highest value of TD is 2000, which indicates the largest
separability that the probability distributions of the two classes do not overlap at all.
The value 2000 is arbitrary and varies across different studies.

This research used the value 2000 in agreement with the TD formula from Van Der
Sanden (1997).
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7734 P. Rakwatin et al.

In this study, we wanted to find the best texture features for both first- and
second-order textures and the effects of texture window size, quantization scale and
displacement length on discrimination capability. In addition, we wanted to see how
TD improved as we added more features. For these reasons, we chose a TD value
greater than or equal to 1900 as our threshold to calculate how many of the stud-
ied class pairs could be successfully discriminated (Van Der Sanden 1997). A value of
1900 corresponds to a lower bound for the likelihood of correct classification of close
to 78%. A maximum of 22% of one of the two classes may thus be misclassified.

3.4 Multiscale classification

An ML classification was used to classify all of the images used in this study. Figure 2
shows the flow chart of the proposed algorithm that was carried out to enhance
the classification accuracy and efficiency of the ML classification method. The ML
classification has been modified to use prior information along with a multiscale
approach.

This research uses the initial resolution scale 50 m backscattering images to cal-
culate textures at 200 and 400 m spatial resolutions. Window sizes larger than 8 × 8
pixels were disregarded because they do not provide any new information for homo-
geneous land-cover types and suffer from mixed-pixel problems. On the other hand,
the window sizes less than 4 × 4 pixels were not analysed because they are too small
to describe texture information of the land-cover class.

Using the low spatial resolution features (400 m), the optimum band combination
of backscattering amplitude and texture features was selected based on TD. PCA

50 m PALSAR HH, HV

image

σ0 conversion

Quantization

(linear, equalization)

8 × 8 box texture

(400 m)
4 × 4 box texture

(200 m)

TD feature selection and

PCA

ML classification

based on prior prob

Accuracy

assessment

TD feature selection and

PCA

ML classification

(equal prior probability)

Cluster aggregation and

ML-output averaging

ML classification

based on prior prob

Cluster aggregation and

ML-output averaging

Figure 2. Flow chart of the classification process of SAR images.
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ALOS/PALSAR, SAR, land-use classification 7735

was then employed to reduce dimensionality of the data, because the parameters are
strongly interrelated. First, four components from the PCA were then processed by
conventional ML classification. At this scale, the a priori probability is assumed to be
equal for all of the classes. The results of the classifier at 400 m resolution scale are
used as a priori probabilities for the 200 m resolution scale. The a priori probabilities
are probabilities with which the class membership of a pixel could be guessed before
classification (Podest and Saatchi 2002). A priori probabilities are represented by the
first term, p(ωi), in the discriminant function for ML classification.

gi(x) = ln p(ωi) − 1
2

ln |�i| − 1
2

(x − μi)T�−1
i (x − μi), (6)

where x is the distance of the pixel pair in the horizontal axis and y is the distance of
the pixel pair in the vertical axis.

The a priori probability when stepping from one scale to another is calculated for
each pixel by

p(ωi) = gi(x)
�g(x)

. (7)

The denominator is the sum over all classes of the discriminant function for the
pixel. This research kept the probablity results for each class as separate layers to serve
as input to the relaxation method decribed in §3.5.

3.5 Relaxation method with spatial information

The last step is the relaxation method that assigns a fixed class to each pixel. The
simplest solution would assign the label, which is the most likely given the different
posterior probabilities of equation (9) computed on a per-pixel basis. However, two
neighbouring pixels are not totally independent and we would like to obtain contin-
uous areas from the ML classifiers. In order to consider the spatial location of the
pixels in the final decision, a clustering method based on a region-growing technique
was implemented. Seed clusters were first computed based on a k-mean approach with
the radiometric channel as input in order to enhance the processing speed. For each
classifier, seed clusters were iteratively merged depending on their averaged 〈p(ωi)〉 val-
ues, with the L1 norm metric being used to compute the distance with the centroids of
neighbouring seed clusters. The smallest cluster was always considered first. A set of
cluster-based averaged 〈p(ωi)〉 images was finally computed. As the clusters are com-
puted for each class, the final labelling is finally performed on a per-pixel basis over the
entire strip. This relaxation method takes into account both the posterior probabilities
and the spatial information.

4. Results and discussion

4.1 Separability evaluation of texture features

Figures 3 and 4 illustrate the probability distribution of average backscattering of L
band HH and HV at different resolution scales for data from the ROIs. Selected ROIs
are forest (green), acacia (red), oil palm (magenta) and clear cut (orange). The prob-
ability density functions (pdf’s) for L-band HH and HV are plotted at 400, 200, and
50 m resolution scales. Van Der Sanden (1997) showed that actual distributions of
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Figure 3. Gaussian probability distribution for region averaged backscatter associated with
land-cover types present in the 443th strip image at 400 (a, b), 200 (c, d) and 50 m (e, f ) scales.
Peat forest is shown in dark green. Acacia is red, oil palm is magenta and clear cut is orange.
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Figure 4. Gaussian probability distribution for region averaged backscatter associated with
land-cover types present in the 444th strip image at 400 (a, b), 200 (c, d) and 50 (e, f ) m scales.
Peat forest is shown in dark green. Acacia is red, oil palm is magenta and clear cut is orange.
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selected land-cover type correspond to Gaussian approximations computed by linear
averaging. This research uses the standard Matlab normpdf function to plot Gaussian
distributions for specific mean and standard deviation values.

Figures 3 and 4 show that lower spatial resolutions can decrease the noise effects and
increase separability of the land-cover classes. However, there is spectral variability
within the same class. This variation is dependent on many factors such as the soil
moisture, plant growth stage and terrain types. HV has better separability than HH
as shown in Figures 3(b) and 4(b). HH seems to mix all of the classes. The HV band
can clearly separate forest and oil palm/clear cut. The forest is uniform over the large
area. However, there are some areas that have lower or higher backscatter than others.
For HV, forest has an approximate backscattering value of –14 dB, whereas oil palm
has its backscattering values at about –15 dB. Depending on the growth stage, acacia
has very similar backscattering compared to forest for both HH and HV. If the acacia
trees are still young, the backscattering is lower than the forest. Clear cut has high
variation in backscattering values. It mostly has a lower backscatter value than forest
and acacia. It is sometimes confused with oil palm.

Figures 5–8 show the analysis results of the texture discrimination capability with
respect to texture window size, quantization scales and displacement length at 400
and 200 m spatial resolution. We found that energy and angular second moment
have the highest discrimination capability for the first- and second-order statistical
textures, respectively. In the figures, d01–d06 means angular second moment with
displacements of 1–6 pixels. ENG means energy of the first-order texture. It can be
seen that equal probability quantization leads to significant improvement compared
with uniform quantization for both 400 and 200 m resolution scales. Depending on
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Figure 5. 443rd image plots relating TD count (%) and quantization level for 400 m reso-
lution scale: (a) and (b) are HH and HV with equal probability quantization; (c) and (d) are
HH and HV with uniform quantization. ENG is energy of first-order texture. d01–d06 mean
displacement lengths of 1–6 pixels on angular second moment of second-order texture.
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Figure 6. 443rd image plots relating TD count (%) and quantization level for 200 m reso-
lution scale: (a) and (b) are HH and HV with equal probability quantization; (c) and (d) are
HH and HV with uniform quantization. ENG is energy of first-order texture. d01–d02 mean
displacement lengths of 1–2 pixels on angular second moment of second-order texture.

the quantization level, equal probability quantization offers around 80% TD count at
400 m scale whereas uniform quantization produces a TC count of about 76% for the
443rd strip. For the 200 m scale, equal probability quantization improves separability
by about 5% compared with uniform quantization. A similar trend is observed for the
444th strip. However, overall discrimination appears somewhat poorer on this strip.

When considering the window size, the results show that lower spatial resolution
increases the discriminating capacities of texture. This is due to the fact that lower
spatial resolutions reduce variance in the texture measure due to the speckle noise.
Figures 5 and 6 for the 443rd strip image show that the larger window size increases
the number of pairs that can be discriminated by as much as 25% for HH and 21% for
HV, for the 443rd strip image. Improvement of 37% for HH and 31% for HV can be
seen for the 444th strip image.

The effects of number of grey levels (quantization) on the capacity of textures to
identify the classes are shown in figures 5–8. For grey scale quantizing using equal
probability quantization, the figures show that rescaling images to a lower number of
grey levels does not weaken the ability of texture features to separate classes. Instead,
a low number of grey levels produce high discrimination capability. For second-order
statistic textures, a low number of grey levels considerably reduces the computational
load, so textural analysis becomes more economical (Van Der Sanden 1997).

Comparison of figures 5 and 7 shows that the discrimination capability of the tex-
ture features computed with 256 grey scale levels is considerably poorer than that with
8 grey scale levels. The difference was approximately 4% for both HH and HV for the
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Figure 7. 444th image plots relating TD count (%) and quantization level for 400 m reso-
lution scale: (a) and (b) are HH and HV with equal probability quantization; (c) and (d) are
HH and HV with uniform quantization. ENG is energy of first-order texture. d01–d06 mean
displacement lengths of 1–6 pixels on angular second moment of second-order texture.

443rd strip at 400 m scale resolution of the 443rd strip image. For 200 m scale resolu-
tion, the advantage of quantization was 2% for HH and 8% for HV. For 400 m scale
resolution, the advantage of quantization was 10% for both HH and HV.

In the case of a statistic based on GLCM, the discrimination capability is best when
the displacement is equal to one pixel and deteriorates when the displacement gets
larger. Figure 5 shows that displacement with d = 1 produces an approximately 80%
TD count compared with 76% with d = 6.

Figures 9 and 10 show the TD count (%) based on a number of features chosen as
inputs to the ML classification at each resolution scale. Starting with the features that
produced the highest TD count added features until it reached 100%. As expected,
the TD count (%) tends to increase with an increase in the number of features. It is
evident from figures 9 and 10 that the spatial resolution has a strong impact on the rate
of increase in the TD count (%). Approximately 20 features at the 400 m resolution
scale are needed to achieve perfect separability compared with 50 features at the 200 m
resolution scale.

4.2 Land-cover classification

Section 4.1 has shown the ability of texture at different scales to discriminate between
land-cover classes. Texture effectiveness appears to be related to the quantization level
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Figure 8. 444th image plots relating TD count (%) and quantization level for 200 m reso-
lution scale: (a) and (b) are HH and HV with equal probability quantization; (c) and (d) are
HH and HV with uniform quantization. ENG is energy of first-order texture. d01–d02 mean
displacement lengths of 1–2 pixels on angular second moment of second-order texture.
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Figure 9. Variation of TD count (%) with the number of features for analysis based on training
sets of 443th strip image at 400 and 200 m resolution scales.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

ok
yo

] 
at

 1
7:

01
 1

0 
Ju

ly
 2

01
2 



ALOS/PALSAR, SAR, land-use classification 7741

3 13 23 33 43 53 63
30

40

50

60

70

80

90

100

Number of features

T
D

 c
o
u
n
t 
(%

)

400 m scale
200 m scale

Figure 10. Variation of TD count (%) with the number of features for analysis based on
training sets of 444th strip image at 400 and 200 m resolution scales.

and method, the displacement and the window size. This section discusses the classifi-
cation results of ML classification with multiscale texture compared with that of ML
classification alone.

Figures 11 and 12 show the classification results and 2007 WWF reference maps
created using Landsat ETM data. We used five land-cover classes: forest, acacia,
oil palm, clear cut and waterbody. Other regions that cannot be clearly identi-
fied by SAR images were grouped as a class named ‘other’ and were masked
out of the calculation. Figures 11(b) and 12(b) show the classification results using
multiscale ML classification. The visual appearance of the classification results
shows a great improvement over the homogeneous areas compared to the classi-
fication results using 50 m pixel-to-pixel ML classification shown in figures 11(a)
and 12(a). This is presumably because the multiscale ML classification also oper-
ates as a low-pass filter by eliminating the speckle and texture noise at 50 m
scale.

For classification results using only backscatter information, the confusion matrices
of 443rd and 444th strip images are shown in tables 3 and 4. The overall classifica-
tion accuracies for these images are 59.86% and 53.41%, respectively. Tables 5 and 6
illustrate that the overall accuracies increased to approximately 73% and 64% for the
443rd and 444th strips, respectively, when texture features and multiscale classification
are used.

Although some of the classes are clearly separated (such as forest and oil palm),
there is significant confusion between natural forest and acacia plantation because
the backscatter and the texture are very similar. This could be predicted based on
the separability analysis shown in figures 3 and 4. Oil palm and clear cut are also
frequently confused. In addition, acacia is a fast-growing tree. Therefore, time-lapse
acquisition between WWF reference maps derived from Landsat and SAR data might
introduce misclassification errors.
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Figure 11. Classification results for the 443rd strip SAR image: (a) the 50 m pixel ML clas-
sification, (b) the 50 m multiscale classification and (c) the 2007 WWF ground data map. Peat
forest is shown in dark green. Acacia is shown in red, oil palm is yellow, clear is orange, water is
blue and other is cyan.

4.3 Discussion

To assess accuracy, we compared the PALSAR-based classification maps with the
WWF reference map that was compiled from Landsat ETM. Note that the accu-
racy of classification maps in this study may be affected by temporal and spatial
inconsistency between these data sources. The accuracy may also be reduced by
the land-use change between the PALSAR acquisition periods and the Landsat
ETM acquisition periods. The other hidden error may be due to the differ-
ent spatial resolution of the data source. Landsat ETM has its spatial resolu-
tion at 30 m, whereas PALSAR mosaic products are generated at 50 m spatial
resolution.
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Forest

Acacia

Oil palm

Clear

Water

Other

(a) (b)

(c)

Figure 12. Classification results for the 444th strip SAR image: (a) the 50 m pixel ML clas-
sification, (b) the 50 m multiscale classification and (c) the 2007 WWF ground data map. Peat
forest is shown in dark green. Acacia is shown in red, oil palm is yellow, clear is orange, water is
blue and other is cyan.

Table 3. Confusion matrix for the 443th strip classified image by MLE based on L-band HH
and HV backscatter (values in %).

Forest Oil palm Acacia Clear cut Water User’s accuracy

Forest 72.1 8.99 50.79 15.01 3.14 79.60
Oil palm 1.92 51.4 9.7 33.68 9.47 68.45
Acacia 25.54 15.62 37.6 18.53 3.55 21.06
Clear cut 0.43 23.99 1.91 32.77 4.56 30.96
Water 0.01 0 0 0 79.27 99.54

Overall accuracy = 59.86%
Kappa coefficient = 0.39
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Table 4. Confusion matrix for 444th strip classified image by MLE based on L-band HH and
HV backscatter (values in %).

Forest Oil palm Acacia Clear cut Water User’s accuracy

Forest 61.2 4.55 30.94 19.42 1.77 60.53
Oil palm 2.56 67.43 18.93 37.61 1.23 72.33
Acacia 22.12 9.94 35.01 17.73 1.7 43.88
Clear cut 14.11 18.08 15.12 25.24 7.51 14.16
Water 0.01 0 0 0 87.79 99.28

Overall accuracy = 53.41%
Kappa coefficient = 0.36

Table 5. Confusion matrix for 443th strip classified image by MLE based on L-band HH and
HV backscatter and multiscale textures (values in %).

Forest Oil palm Acacia Clear cut Water User’s accuracy

Forest 85.33 6.5 39.49 11.17 1.97 85.84
Oil palm 1.39 74.55 8.94 50.82 11.48 72.46
Acacia 13.11 8.04 50.94 17.01 4.2 39.75
Clear cut 0.17 10.9 0.62 20.99 2.59 39.08
Water 0.01 0 0 0 79.77 99.50

Overall accuracy = 73.05%
Kappa coefficient = 0.57

Table 6. Confusion matrix for 444th strip classified image by MLE based on L-band HH and
HV backscatter and multiscale texture (values in %).

Forest Oil palm Acacia Clear cut Water User’s accuracy

Forest 79.51 3.77 31.33 14.36 1.04 67.89
Oil palm 0.89 74.85 13.86 31.53 0.26 79.64
Acacia 9.15 5.16 40.84 16.83 0.75 63.54
Clear cut 10.42 16.20 13.97 37.25 11.09 22.04
Water 0.03 0.01 0 0.03 86.87 97.01

Overall accuracy = 63.93%
Kappa coefficient = 0.50

The overall classification accuracies for the 443rd strip image are better than for
the 444th strip image. This is probably because the topography of the 444th strip
area is hilly terrain. The land covers in this area are more spatially complex than in
the 443rd strip image. Most of the deforested areas are owned by local villagers. In
contrast with 444th strip, the 443rd strip area is located in flat terrain. The planta-
tions in this area are operated by industrial companies and cover larger areas. For this
reason, the land uses are more homogeneous than the 444th strip and thus produce
higher classification accuracy. We also would like to mention that the backscattering
varies from the maximum to the minimum value, corresponding to the wet and dry
seasons, respectively. This is because the moisture content is related to the seasonal
change.
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5. Conclusion

In this research, we studied the potential for using ALOS PALSAR 50 m orthorectified
L-band HH and HV data to map tropical forest. Detailed texture analysis was intro-
duced as an additional information source. Our results showed that images rescaled to
a lower number of grey levels (8 or 16) gave more accurate results as well as reducing
computation time. Equal probability quantization schemes improved the separability
between classes compared with uniform quantization. The displacement parameter
also has an effect. There was a tendency for the discrimination capability to decrease
when the displacement increased.

The analysis results demonstrated that lower spatial resolution improves the dis-
crimination capability due to the fact that low spatial resolution reduces the effects
of noise. Unsurprisingly, the number of feature used increases the discrimination
capability. However, the rate depends on the window size (resolution).

This research used modified ML classification to identify land use. The classification
strategy used a priori probabilities derived from the results of an ML classifica-
tion at a more aggregated scale. The overall accuracies for land-cover classification
increased by approximately 10% when combined with texture. However, we had dif-
ficulty in separating natural forest from acacia plantation and oil palm from clear
cut. This is due to the fact that backscatter and texture of these class pairs are very
similar.
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