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Yangon is the largest city and major economic area
in Myanmar. However, it is considered to have a
high risk of floods and earthquakes. In order to mit-
igate future flood and earthquake damage in Yangon,
land cover change simulations considering flood and
earthquake vulnerabilities are needed to support ur-
ban planning and management. This paper proposes
land cover change simulations in Yangon from 2020 to
2040 under various scenarios of flood and earthquake
vulnerabilities with a master plan. In our methodol-
ogy, we used a dynamic statistical model to predict ur-
ban expansion in Yangon from 2020 to 2040. We em-
ployed a master plan as the future dataset to enhance
the prediction of urban expansion. We applied flood
and earthquake vulnerabilities based on multi-criteria
analysis as the areas vulnerable to disaster. We simu-
lated land cover changes from 2020 to 2040 consider-
ing the vulnerable areas with a master plan for multi-
ple scenarios. The experiments indicated that by using
a master plan, some of the predicted urban areas are
still located in areas highly vulnerable to floods and
earthquakes. By integrating the prediction of urban
expansion with flood and earthquake vulnerabilities,
the predicted urban areas can effectively avoid areas
highly vulnerable to floods and earthquakes.

Keywords: prediction of urban expansion, disaster risk
assessment, disaster risk reduction, Landsat

1. Introduction

Yangon, formerly known as Rangoon, is the largest city
in Myanmar. With a population of more than five mil-
lion, it is triple the size of the country’s second-largest
city, Mandalay [1, 2]. Yangon functions as the economic
center of the country with 12% of the national population
and 22% of the country’s gross domestic product (GDP),
based on data from the Planning Department, Ministry of
National Planning and Economic Development (MNPED,
2010–2011). Yangon is considered to be the country’s
commercial and financial hub as well as its gateway for
tourism. Yangon is expected to continue capturing a dom-

inant share of Myanmar’s economic growth. Yangon’s
population growth rapidly increased in the past decade.
The average population growth rate of Yangon between
1998 and 2011 was 2.58% annually; the national popula-
tion growth rate was 0.9% during that time [3].

However, Yangon has suffered from the series of
floods, with new flooding almost every year: 2008, 2010,
2013, 2014 and 2015. In 2014, Yangon had losses of
more than 8.5 million US dollars with 63,082 people,
18 schools, 17 miles of road, 8 bridges, and 56,486 acres
of farmland affected [4]. In extreme cases, flooding has
occurred 6 to 10 times a year when heavy rainfall has
come with high tides during the monsoon season [5].

Also, Yangon was struck by earthquake in 1930, an
earthquake with the magnitude of 7.0 in the Bago region
and caused extensive damage, including 500 casualties. In
Yangon, 50 people died out of a population of 400,000 [4].
Yangon is also a highly earthquake-prone area, located
along the active Sagaing fault system and built on weak
surface geological conditions associated with an alluvial
delta [5].

Yangon is regarded to have high risk of floods and
earthquakes. As a result, flood and earthquake aspects
should be used for land use planning. In order to sup-
port urban planning and management, multiple scenarios
for predicted land cover changes in Yangon from 2020 to
2040, scenarios considering flood and earthquake vulner-
abilities are required to reduce the future impacts of floods
and earthquakes.

Many urban expansion models have been developed in
order to understand the system of urban expansion and
predict which areas will be urbanized in the future. An ur-
ban land-use model based on a spatial interaction model
was developed by Lowry [6]. The statistical model was
used to produce an urban expansion model [7]. An ur-
ban growth model based on automata cellular was pro-
posed by Batty [8]. Moreover, by using a multi-agent-
based model, a residential distribution estimate was de-
veloped [9]. However, most works have not utilized a dis-
aster aspect for urban expansion modeling in sustainable
urban development.

This research proposes simulated urban expansion
models by integrating flood and earthquake vulnerabili-
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ties in order to reduce future flood and earthquake dam-
age. By using the simulations, future urban areas will be
located in areas that would be safe from floods and earth-
quakes. In this research, we propose the simulated land
cover changes in Yangon from 2020 to 2040 under multi-
ple scenarios of flood and earthquake vulnerabilities with
a master plan.

2. Methodology

2.1. Flowchart of our Methodology
As our dataset, we used remotely-sensed data and GIS

in this research. For remote sensing data, we used Land-
sat images with a Landsat-3 MMS image from 1978, a
Landsat-4 TM image from 1990, a Landsat-7 ETM im-
age from 2000, a Landsat-5 TM image from 2009, and
a Landsat-8 OLI image from 2015 to classify land cover
images. We applied SRTM DEM v. 4.1 to provide ele-
vation, slope, flow accumulation, and the drainage net-
work. We used TRMM 3B-43 to obtain the rainfall rate,
or how much rain falls over a period of time. We em-
ployed MODIS MOD09Q1 from 2000 to 2015 to provide
the historical water surface. For GIS data, we used roads
in 2012 by JICA, railways in 2012 by JICA, the seis-
mic intensity in 2012 by Thant, soil type in 2002 by the
Myanmar Agriculture Service, and the 2016 master plan
by JICA.

For our methodology, we developed urban expansion
modeling based on a dynamic statistical model to predict
land cover changes in Yangon from 2020 to 2040. We
then employed the master plan as the future dataset to en-
hance the predictions of land cover changes from 2020 to
2040. We proposed assessments of flood and earthquake
vulnerabilities based on the multiple criteria analysis for
the areas vulnerable to flood and earthquake. We simu-
lated land cover changes from 2020 to 2040 taking into
consideration flood and earthquake vulnerabilities with
the master plan as multiple scenarios. To validate the
results, we calculated total flood and earthquake losses
in area terms and then compared the multiple scenarios.
Fig. 1 is a flowchart of our methodology to simulate land
cover changes from 2020 to 2040 with multiple scenarios.

2.2. Prediction of Urban Expansion
We developed urban expansion modeling based on the

dynamic statistical model by using remotely sensed data
and GIS data. Generally, urban expansion considers three
aspects: (1) facilities such as department stores, offices,
schools, etc., (2) transportation infrastructure such as
roads and railways, and (3) environmental features such
as rivers and mountains [10]. In this research, we defined
the factors that indicate urban expansion as (1) the dis-
tance from the multiple centers of urban areas, (2) the dis-
tance from the urban areas in the past, (3) the distance
from roads, (4) the distance from railways, (5) elevation,
(6) the conversion of land cover, and (7) the lands sepa-
rated by rivers. We used the maximum likelihood estima-
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Fig. 1. Flowchart of our methodology.

tor with the dynamic statistical model to estimate urban
expansion.

First, we prepared the data for urban expansion and the
defined factors from remotely sensed and GIS data.For re-
motely sensed data, we used Landsat images from 1978,
1990, 2000, 2009, and 2015 (almost every 10 years) with
the Mahalanobis distance method to classify land cover
images with urban areas, farmland, forests, lakes, and
rivers. The Mahalanobis distance is a well-known super-
vised classification method. For the training session, the
sampling points were manually selected from more than
five hundred samples in each class. To reduce the heavy
computation in calculating the parameters of urban ex-
pansion modeling, we merged croplands and forests into
vegetation, and lakes and rivers into water. Thus, there
were three classes for computing in urban expansion mod-
eling: urban areas, vegetation, and water. In this way, we
could ascertain urban expansion, urban areas in the past,
the conversion of land cover and lands separated by rivers.
Then, we employed stereo GeoEye images from 2013 to
extract building heights [11]. By combining the build-
ing heights and the separated lands, we were able to ex-
tract the multiple centers of urban areas. Next, we applied
SRTM DEM as elevation. For GIS data, we used roads
and railways from GIS data from 2012.

After the data was prepared, we observed the urban ex-
pansion with the defined factors to obtain the dynamic sta-
tistical values, such as the means and variances with the
dynamic times.

For urban expansion modeling, we used the maxi-
mum likelihood estimator [12] with the dynamic statis-
tical model [13]. By using the estimator, we needed to
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maximize the probabilities of the defined factors using the
following equation.

Maximizing Probability ofthe conversion of land cover +
Probability of distance from multi −
centers of urban area +
Probability of distance from urban areas in the past +
Probability of distance from road +
Probability of distance from railway +
Probability of elevation

. . . . . . . . . . . . . . . . . . . (1)

The probability of the conversion of land cover was as-
sumed as a Markov chain. The probabilities of the dis-
tance from the multiple centers of the urban areas, the dis-
tance from the urban areas in the past, the distance from
roads, the distance from railways, and land elevation were
assumed as a Gaussian distribution.
Equation (1) can be separated into Eqs. (2) and (3).

Maximizing Probability of the conversion of land cover

. . . . . . . . . . . . . . . . . . . (2)

Maximizing Probability of distance from multi−
centers of urban area+
Probability of distance from urban areas in the past+
Probability of distance from road+
Probability of distance from railway+
Probability of elevation

. . . . . . . . . . . . . . . . . . . (3)

Equation (2) can be expressed in more detail as the fol-
lowing equation.

∑m,n
i=1, j=1 vegetation(i, j, t) → urban(i, j, t +1)

= Nvegetation(t)→urban(t+1)

∑m,n
i=1, j=1 water(i, j, t) → urban(i, j, t +1)

= Nwater(t)→urban(t+1)

(4)

Here, vegetation(i, j, t) → urbanarea(i, j, t) is the vege-
tation at the pixel of i, j in time t and changes to the ur-
ban areas at the pixel of i, j in time t +1, water (i, j, t) →
urbanarea(i, j, t) is the water at the pixel of i, j in time
t and changes to the urban area at the pixel of i, j in
time t + 1, and Nvegetation(t)→urban(t+1) is the number of
observed pixels that changed from vegetation at time t to
urban at time t + 1. Nwater(t)→urban(t+1) is the number of
observed pixels that changed from water at time t to urban
at time t +1.

Equation (3) can be written in more detail as Eq. (5).

Minimizing∑m,n
i=1, j=1

[
β1

(
x1(i, j, t +1)−μ1(t → t +1,c)

)2

σ1(t → t +1,c)2

+β2

(
x2(i, j, t +1)−μ2(t → t +1)

)2

σ2(t → t +1)2

+β3

(
x3(i, j, t +1)−μ3

)2

σ32

+β4

(
x4(i, j, t +1)−μ4(t → t +1)

)2

σ4(t → t +1)2

+β5

(
x5(i, j, t +1)−μ5(t → t +1)

)2

σ5(t → t +1)2

]
,

. . . . . . . . . . . . . . . . . . . (5)

where x1(i, j, t) = the distance from the multiple centers
of urban areas at the pixel of i, j in time t, x2(i, j, t) =
distance from urban area in the past at the pixel of i, j in
time t. x3(i, j, t) = the distance from a road at the pixel of
i, j in time t. x4(i, j, t) = distance from the railway at the
pixel of i, j in time t. x5(i, j, t) = elevation at the pixel of
i, j in time t. μ1,μ2, . . . ,μ5 are the means of the defined
factors, σ1

2,σ2
2, . . . ,σ5

2 are the variances of the defined
factors, and β1,β2, . . . ,β5 are the precision parameters of
the defined factors.

Then, in order to estimate urban expansion, Eqs. (4)
and (5) were calculated simultaneously.

We used the land cover image from 1978 as the ini-
tial land cover image to estimate land cover images from
1990, 2000, and 2009.

To predict urban expansion, for a number of pixels of
urban areas, we found that there was a close relation-
ship between urban expansion and population growth as
a linear function. We employed the projected popula-
tion [14] with the relationship to estimate the prospective
total number of pixels of urban areas. We used the ob-
served parameters with the polynomial regression to esti-
mate the other future parameters.

We used the estimated land cover image in 2009 as the
initial land cover image to predict land cover images for
2020, 2030, and 2040.

2.3. Assessment of Flood Vulnerability
We proposed an assessment of flood vulnerability

based on multi-criteria analysis in Yangon. We followed
the work of Kazakis [15]. The seven factors that indicate
flood vulnerability are (1) elevation, (2) slope, (3) land
cover type, (4) soil type, (5) flow accumulation, (6) dis-
tance from drainage channel, and (7) rainfall rate. We
used the empirical model by linking with the historical
water surface from 2000 to 2015 to calculate the esti-
mated coefficients. By using the historical water surface,
the flood vulnerability indicates the vulnerable areas in
terms of water surface frequency.

First, we prepared data for the defined factors and water
surface from 2000 to 2015. For defined factors, we clas-
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sified a Landsat image from 2015 with the Mahalanobis
distance to obtain the land cover image with urban areas,
croplands, forests, lakes, and rivers.

Then, we used SRTM DEM as elevation, and we em-
ployed it to calculate the slope. We also applied SRTM
DEM to compute flow accumulation. Next, we used the
flow accumulation to calculate drainage network. After
that, we applied TRMM 3B-42 monthly data to calculate
the average rainfall rate. We then used soil types from
2012 GIS data.

For the historical water surface, we used MODIS
MOD09Q1 images (8 days composition) from 2000 to
2015 to provide the historical water surfaces. First, we
calculated NDVI images from the MOD09Q1 images. We
then classified the NDVI images into two classes of wa-
ter coverage (low NDVI) and non-water coverage (high
NDVI) by using the manual threshold. The historical wa-
ter surface was calculated by the summation of water cov-
erage over every 8-day period from 2001 to 2015.

We defined the flood vulnerability index on a scale of
0.0 (lowest flood vulnerability) to 1.0 (highest flood vul-
nerability). The flood vulnerability was defined as the lin-
ear function of the defined factors and their weights as
Eq. (6) [15].

FVI = wF ·F +wI · I +wG ·G+wU ·U
+wS ·S +wE ·E +wD ·D,

(6)

where FVI = flood vulnerability index, F = flow ac-
cumulation, I = rainfall rate, G = soil type, U = land
cover type, S = slope, E = elevation, D = distance from
drainage network, and wi = the weight of the defined fac-
tor.

We assigned the values of the parameters of the flood
vulnerability index in Table 1.

We calculated the weights of the flood vulnerability in-
dex by using a linear regression with the historical wa-
ter surface. After the calculations, the estimated weights
were expressed as wF = −10.2, wI = 29.0, wG = 5.01,
wU = −0.06, wS = 4.37, wE = 59.9, and wD = 3.9.

2.4. Assessment of Earthquake Vulnerability
Following the work of Karimzadeh [16], we proposed

an assessment of earthquake vulnerability based on the
multi-criteria analysis in Yangon. We used soil type and
slope as a linear function to calculate the seismic am-
plitude map (microzonation map). Then, we computed
the ground shaking map by multiplying Thant’s simulated
seismic intensity [17] by the amplitude map. The ground
shaking map was assumed as the earthquake vulnerability
index.

First, we prepared data for the soil type, slope, and sim-
ulated seismic intensity. We used SRTM DEM to calcu-
late the slope. For soil type, we used the soil type map
from 2002 GIS data. For seismic intensity, we used the
simulated seismic intensity with the earthquake probabil-
ity of 2% from the work of Thant [17].

Then, we calculated the earthquake amplitude map.
The earthquake amplitude was defined in terms of the in-

Table 1. The defined parameters of flood vulnerability index.

Parameters Class Index value

Flow acc.
(F)

600,000-2,000,000 1.0
60,000-600,000 0.8
10,000-60,000 0.6

400-10,000 0.4
0-400 0.2

Distance. from drainage
(D)

0-270 1.0
271-540 0.8
541-810 0.6
811-1350 0.4
1350-3510 0.2

Elevation [m]
(E)

0-3 1.0
4-7 0.8

8-10 0.6
11-17 0.4
18-68 0.2

Land cover
(U)

Urban 1.0
Cropland 0.67

Forest 0.33
Rainfall rate [mm/hr]

(I)
0.29 0.5

Slope [%]
(S)

0-0.20 1.0
0.21-0.62 0.8
0.63-1.19 0.6
1.20-2.62 0.4
2.63-14.18 0.2

Soil types
(G)

Rocks 0.8
Alluvial 0.2

Table 2. The defined parameters of earthquake amplitude index.

Parameters Class Index value
Soil types

(G)
Alluvial 1.0

Lateritic soil (Rock) 0.5

Slope [degree]
(S)

Mean of 2.68 1.0
Mean of 1.38 0.75
Mean of 0.57 0.50
Mean of 0.55 0.25

dex on a scale of 0.0 (lowest amplitude) to 1.0 (highest
amplitude). The earthquake amplitude was defined as the
linear function of the defined factors of (1) soil type and
(2) slope. The earthquake amplitude can be expressed us-
ing the following equation.

EA = wG ·G+wS ·S +C, . . . . . . . . (7)

where EA = earthquake amplitude, G = soil type, S =
slope, C = constant, wi = the weight of the defined factor.

We assigned the values of the parameters of the earth-
quake amplitude index in Table 2.

For the weights of the earthquake amplitude in-
dex, we followed the expert opinion from the work of
Karimzadeh [16]. The weight of the soil type (wG) was
0.3, and the weight of the slope (wS) was 0.1. In the work
of Karimzadeh [16], the factors of soil type, slope, allu-
vial thickness, water table, and predominant period were
used. However, in this research, we did not have an allu-
vial thickness, water table, or predominant period. As a
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result, the bias (C) is 0.6 since it is expressed in terms of
unobserved parameters of alluvial thickness (the weight
of 0.25), water table (the weight of 0.25), and predomi-
nant period (the weight of 0.1).

Next, we used the seismic intensity map from the work
of Thant [17]. The seismic hazard analysis is simulated by
applying the probabilistic way. In this research, we used
the seismic intensity map in terms of peak ground accel-
eration (PGA) with the earthquake probability of 2%.

Then, the earthquake amplitude map and the seismic in-
tensity map were integrated to compute the ground shak-
ing map. The equation of the ground shaking term of PGA
is expressed as in the following equation.

GS = EA×EI, . . . . . . . . . . . . (8)

where GS = ground shaking, EA = earthquake amplitude,
and EI = earthquake intensity.

Next, the ground shaking map was converted to the
earthquake vulnerability index on a scale of 0.0 (lowest
earthquake vulnerability) to 1.0 (highest earthquake vul-
nerability) by using a linear transformation.

2.5. Simulations of Land Cover Changes Consider-
ing Flood and Earthquake Vulnerabilities

As in Kron’s work [18], disaster risk reduction can be
expressed in terms of reducing (1) the hazard, (2) vulner-
ability, and (3) value. The hazard refers to the threatening
natural disaster event, including its frequency of occur-
rence and its level of damage. Then, the vulnerability
can refer to the vulnerable areas that are highly lacking
in resistance to damaging and destructive forces. Next,
the value or value at risk can refer to the buildings, items,
humans, and properties that are present at the location in-
volved.

In this research, the hazard was not considered in dis-
aster risk reduction. Thus, disaster risk reduction are ex-
pressed in the term of reducing (1) vulnerability and (2)
value as Eq. (9).

Disaster risk reduction
= reducing Vulnerability∗Vulue.

(9)

We assumed that urban (high value) flight from the high
disaster vulnerability area (high vulnerability) was equal
to disaster risk reduction in terms of reducing vulnera-
bility and value. Urban areas are more important areas
than surrounding areas, such as vegetation and water ar-
eas, since urban areas have the characteristics of the high-
est population density, various human-built features, and
the most important human activities. When an urban area
is impacted by a disaster, it might make for a huge loss
and might spread the impacts throughout the city or to the
countryside. As a result, we tried to allocate urban areas
in the future to the low venerability areas or safe areas to
reduce the impact of loss-causing disasters.

The disaster risk reduction for future urban expansion
can be expressed in terms of urban areas growing due to
escaping from areas highly vulnerable to disaster. Thus,
by integrating it with disaster vulnerability, the predic-

Source: JICA, 2016. 
Fig. 2. The master plan in Yangon by JICA, 2016.

tion of urban expansion can be calculated by modifying
an equation 5 in order to indicate the simulated urban ar-
eas that would avoid the highly vulnerable areas.

First, to make the prediction of urban expansion more
reliable, the master plan can be used as the future dataset
for the prediction model. The master plan for Yangon was
analyzed from many aspects of urban growth by many ex-
perts and was provided by the JICA Team [19]. In the
master plan, there are many features, including the new
town core, subcenter, industry, transportation, built-up ar-
eas in 2025, and built-up areas in 2040 (Fig. 2).

Those features can be used to extract new centers of
urban areas, new roads, and new railways as the future
dataset for the prediction model. To make the prediction
of the urban expansion as accurate as possible, we used
the land cover image from 2015 as the initial image for
the urban expansion estimation to predict the urban ex-
pansion in 2020, 2030, and 2040. We also used the five
classes of urban area, cropland, forest, lake, and river in-
stead of the three classes of urban area, vegetation, and
water in the simulation step. We did this since the simu-
lation process of urban expansion modeling did not have
a high computation cost and forest is a significant area for
preservation in the master plan.

In predicting urban expansion while considering flood
vulnerability, we used the prediction of urban expansion
with the master plan to get more reliable results for urban
expansion in the future. In this research, the assessment of
flood vulnerability was used as one factor in the prediction
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model, as can be seen in Eq. (10).

Minimizing∑m,n
i=1, j=1

[
β1

(
x1(i, j, t +1)−μ1(t → t +1,c)

)2

σ1(t → t +1,c)2

+β2

(
x2(i, j, t +1)−μ2(t → t +1)

)2

σ2(t → t +1)2

+β3

(
x3(i, j, t +1)−μ3

)2

σ32

+β4

(
x4(i, j, t +1)−μ4(t → t +1)

)2

σ4(t → t +1)2

+β5

(
x5(i, j, t +1)−μ5(t → t +1)

)2

σ5(t → t +1)2

+β6

(
x6(i, j)

)2

σ6
2

]
.

. . . . . . . . . . . . . . . . . . . (10)

x6(i, j) = the flood vulnerability index at the pixel of (i, j),
σ6

2 are the variances of the flood vulnerability index, and
β6 is the weight parameter of the flood vulnerability in-
dex.

By using the flood vulnerability map with the predic-
tion of urban expansion, the predicted urban areas will try
to avoid the areas highly vulnerable to floods.

In the prediction of urban expansion taking earthquake
vulnerability into consideration, we also used the predic-
tion of urban expansion with the master plan to raise the
reliability of future urban expansion. In this research, the
assessment of earthquake vulnerability was used as one
factor in the prediction model, Eq. (11).

Minimizing∑m,n
i=1, j=1

[
β1

(
x1(i, j, t +1)−μ1(t → t +1,c)

)2

σ1(t → t +1,c)2

+β2

(
x2(i, j, t +1)−μ2(t → t +1)

)2

σ2(t → t +1)2

+β3

(
x3(i, j, t +1)−μ3

)2

σ32

+β4

(
x4(i, j, t +1)−μ4(t → t +1)

)2

σ4(t → t +1)2

+β5

(
x5(i, j, t +1)−μ5(t → t +1)

)2

σ5(t → t +1)2

+β7

(
x7(i, j)

)2

σ7
2

]
.

. . . . . . . . . . . . . . . . . . . (11)

x7(i, j) = the earthquake vulnerability index at the pixel of
i, j, σ7

2 are the variances of the earthquake vulnerability
index, and β7 are the weight parameter of the earthquake
vulnerability index.

By using the earthquake vulnerability map with the pre-
diction of urban expansion, the predicted urban areas will
try to avoid the areas highly vulnerable to earthquake.

2.6. Calculating Total Flood and Earthquake
Losses

To evaluate the results of the predicted urban areas
when a master plan is used and when a master plan plus
flood risk reduction is used, we considered the total flood
loss in terms of area. As put forth in Kron’s work [18],
disaster risk assessment can be expressed by hazard, vul-
nerability, and value. In this research, based on Kron’s
work [18], we used the following equation to define the
total flood loss.

Total FLA(t) = ∑
(
LC(i, j, t)×FVI(i, j)

)
. . (12)

Total FLA(t) = total flood loss in terms of area at time
t, LC(i, j, t) = land cover at pixel (i, j) at time t (urban
area, cropland, forest), and FVI(i, j) = flood vulnerability
index at pixel (i, j).

To evaluate the results of the predicted urban areas
when a master plan is used and when a master plan plus
flood risk reduction is used, we considered the total earth-
quake loss in terms of area. Based on Kron’s work [18],
we used the following equation to define the total earth-
quake loss in terms of area.

Total ELA(t) = ∑
(
LC(i, j, t)×EV I(i, j)

)
. . (13)

Total ELA(t) = total earthquake loss in terms of area at
time t, LC(i, j, t) = land cover at pixel (i, j) at time t (ur-
ban area, cropland, forest), and EV I(i, j) = earthquake
vulnerability index at pixel (i, j).

3. Results and Discussion

3.1. Prediction of Urban Expansion
The referenced land cover images from 1990, 2000, and

2009 can be seen as Figs. 3(a), (c), and (e), respectively,
and the estimated land cover images from 1990, 2000, and
2009 are presented as Figs. 3(b), (d), and (f), respectively.

The referenced land cover image from 2015 is shown in
Fig. 4(a), and the predicted land cover images from 2020,
2030, and 2040 are presented as Figs. 4(b), (d), and (f),
respectively.

For validation, we made two classes: urban and non-
urban. The accuracies of the estimated and predicted ur-
ban expansion images are expressed in Table 3.

We found the average accuracy to be 92.88% with a
true positive rate of 73.31% (urban estimate) and a true
negative rate of 95.07% (non-urban estimate). In the pre-
diction of urban expansion, the urban areas look low dis-
tribution since we did not have the dataset for the future,
such as for new roads and railways.

3.2. Assessment of Flood Vulnerability
The results of the flood vulnerability assessment can be

seen in Fig. 5.
After seeing the results of the flood vulnerability as-

sessment, we used empirical model linking with the his-
torical water surface to investigate whether elevation had
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Fig. 3. The reference land cover image in (a) 1990, (c) 2000,
(e) 2009 and the estimated land cover image in (b) 1990,
(d) 2000, (f) 2009.

Fig. 4. The reference land cover image in (a) 2015 and
the predicted land cover image in (b) 2020, (c) 2030, and
(d) 2040.

the most influence on the flood vulnerability index. How-
ever, the impacts of flow accumulation and drainage net-

Table 3. The accuracy of urban expansion modeling.

Year
Accuracy

[%]

True
Positive
Rate [%]

True
Negative
Rate [%]

1990 98.01 77.39 99.03
2000 93.63 64.10 96.55
2009 91.39 68.76 95.06
2015 88.43 82.97 89.64

Average 92.88 73.31 95.07

1.0

0.0

Region A 

Region  
B 

Fig. 5. Flood vulnerability map.

works could not be detected since the estimation relies on
the historical water surface as analyzed by MODIS 8 days
composition which can detect water surface areas that re-
main more than 4 days. Consequently, our resulting flood
vulnerability map concerns coastal and riverine floods and
indicates vulnerable areas in terms of the frequency of the
water surface.

3.3. Assessment of Earthquake Vulnerability
The results of earthquake vulnerability assessment are

shown in Fig. 6.
According to the results of the earthquake vulnerabil-

ity assessment, the areas vulnerable to earthquake can be
classified into three significant areas: (1) high shaking
ground areas, (2) alluvial areas, and (3) high slope areas.
In Yangon, the eastward areas are highly vulnerable since
they are located close to a faultline. Most areas are lo-
cated in alluvial areas that have also highly vulnerable ar-
eas. However, few areas are highly vulnerable areas due
to their steep slope.

3.4. Simulation of Land Cover Changes Consider-
ing Flood Vulnerability

The urban expansion images for 2020, 2030, and
2040, predicted by using the master plan, are shown in
Figs. 7(a), (c), and (e), respectively.The urban expansion
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1.0

0.0

Region 
A 
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B 

Fig. 6. Earthquake vulnerability map.

Region 
 A 

Region  
B 

Fig. 7. The predicted land cover image in (a) 2020, (c) 2030,
(e) 2040 using master plan and the predicted land cover im-
age in (b) 2020, (d) 2030, (f) 2040 using flood risk reduction.

images in 2020, 2030, and 2040 predicted by using the
master plan with the flood vulnerability map are shown in
Figs. 7(b), (d), and (f), respectively.

The total flood losses in Yangon from 2020 to 2040 in
terms of area in urban areas, croplands, and forests when

Table 4. Total flood area losses from 2020 to 2040 [km2].

Using master plan
2020 2030 2040

Urban 231.18 297.15 364.77
Cropland 784.23 723.23 659.23

Forest 50.21 45.25 41.62
Using master plan and flood risk reduction

2020 2030 2040
Urban 222.39 280.53 346.56

Cropland 793.71 742.10 680.21
Forest 49.53 42.99 38.85

Fig. 8. Comparison of total flood area losses using master
plan with and without flood risk reduction.

a master plan is used and when a master plan and flood
risk reduction is used in are described in Table 4.

Figure 8 compares total urban flood losses in terms
area using a master plan and using a master plan with
flood risk reduction in Yangon from 2020 to 2040.

Table 4 and Fig. 7 show that the total flood losses in
terms of area are highest for cropland. From 2020 to 2040,
the total flood losses in terms of area will have increased
since the urban areas will have grown, but the total flood
losses for cropland in terms of area will have decreased
because the cropland areas will have shrunk, whereas the
total flood losses for forests in terms of area look stable.

We found that by using a master plan with the predic-
tion, some of the predicted urban areas are still located
in highly vulnerable areas (Figs. 7(a), (c), and (e)). For
example, in the southern and eastern parts of Yangon (Re-
gions A and B in Fig. 5), some prospective urban areas are
located in the areas highly vulnerable to flooding, mainly
because they are in low elevations. By using a master plan
and flood vulnerability map with the prediction, the pre-
dicted urban areas can avoid the highly vulnerable areas
effectively. In Figs. 7(b), (d), and (f), the prospective ur-
ban areas are located in the areas that are safe (high in el-
evation) or have low vulnerability to flooding. The statis-
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Fig. 9. The predicted land cover image in (a) 2020, (c) 2030,
(e) 2040 using master plan and the predicted land cover im-
age in (b) 2020, (d) 2030, (f) 2040 using earthquake risk
reduction.

tics of the total urban flood loss in terms of area (Fig. 8)
confirmed that the values of total urban flood losses in
terms of area from 2020 to 2040 obtained through integra-
tion with flood risk reduction are less than when flood risk
reduction is not used by around 3.80% for 2020, 5.60%
for 2030, and 5.00% for 2040.

3.5. Simulated Land Cover Change Considering
Earthquake Vulnerability

The predicted land cover images obtained by using a
master plan are shown in Figs. 9(a), (c), and (e). The
predicted land cover images obtained by using a master
plan with the earthquake vulnerability map are shown in
Figs. 9(b), (d), and (f).

In Table 5, the total lost in Yangon to earthquake from
2020 to 2040 in terms of urban area, cropland, and forest
when a master plan is used is compared with the data ob-
tained using a master plan and earthquake risk reduction.

In Fig. 10, the total lost in Yangon to earthquake from
2020 to 2040 in terms of urban area when a master plan

Fig. 10. Comparing the total earthquake area losses between
using master plan and flood risk reduction.

is used is compared with the data obtained using master
plan and earthquake risk reduction.

In Table 5 and Fig. 9, we found that the total earth-
quake loss in terms of area is the highest for cropland. By
considering with time variation from 2020 to 2040, the
total area lost to earthquake for urban areas has increased,
but the total area lost to earthquake for cropland areas has
decreased. The total forest area lost to earthquake looks
stable.

We investigated by using the masterplan with the pre-
diction whether some of the predicted urban areas were
still located in highly vulnerable areas (Figs. 9(a), (c),
and (e)). For instance, in the southern parts of Yangon,
some prospective urban areas are located in areas (allu-
vial soils) highly vulnerable to earthquake as Region A in
Fig. 6 and in the highly earthquake vulnerable areas near
the faultline as Region B in Fig. 6. By using a master plan
and earthquake vulnerability map with the prediction, the
predicted urban areas can avoid highly vulnerable areas
effectively (Figs. 9(b), (d), and (f)). In the southern parts
of Yangon, the prospective urban areas continue to be lo-
cated in areas with low vulnerability of earthquake (rock
areas) as Region A and with low vulnerability of earth-
quake areas (far from faultlines) as Region B. The graphs
of the total earthquake losses in terms of area (Fig. 10)
confirm that the values of total earthquake losses in terms
of area from 2020 to 2040 by using earthquake risk re-
duction are less than those without using earthquake risk
reduction, around 5.02% for 2020, 4.28% for 2030, and
4.84% for 2040.

3.6. Comparison of Simulated Land Cover Changes
Considering Flood and Earthquake Vulnera-
bilities

Figure 11 compares the predicted land cover change
considering flood vulnerability (Figs. 11(a), (c), and (e))
and the predicted land cover change considering earth-
quake vulnerability (Figs. 11(b), (d), and (f)).
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Fig. 11. The predicted land cover image in (a) 2020,
(c) 2030, (e) 2040 using flood risk reduction and the pre-
dicted land cover image in (b) 2020, (d) 2030, (f) 2040 using
earthquake risk reduction.

We investigated that the urban expansions by using
flood vulnerability and by using earthquake vulnerability
have some different results. Some areas are high vulner-
able to flood but low vulnerable to earthquake. While,
some areas are low vulnerable to flood but high vulnera-
ble to earthquake. As a result, by using individually flood
and earthquake risk reductions, some of the predicted ur-
ban areas will be located in lowly flood vulnerable areas
but highly earthquake vulnerable areas for using flood risk
reduction, whereas some of the predicted urban areas will
be located in lowly earthquake vulnerable areas but highly
flood vulnerable areas for using earthquake risk reduction.
For example, Region A in Fig. 11 has lowly flood vulner-
able areas (high elevation) but highly earthquake vulner-
able areas (near faultline). Hence, by simulating urban
expansion with flood vulnerability, urban areas will be
occurred in Region A (safe for flood) but by simulating
urban expansion with earthquake vulnerability, urban ar-
eas will be disappeared in Region A (dangerous for earth-
quake). In contrast, Region B in Fig. 11 has highly flood

vulnerable areas (low elevation) but lowly earthquake vul-
nerable areas (far faultline). Thus, by simulating urban
expansion with flood vulnerability, urban areas will be
lost in Region B (dangerous for flood) but by simulating
urban expansion with earthquake vulnerability, urban ar-
eas will be appeared in Region B (safe for earthquake).

To improve the resultant urban expansion that can
against both flood and earthquake, the simulated land
cover change by using integrally flood and earthquake risk
reduction should be conducted. However, for calculating
the reliable parameters of urban expansion model by com-
bining flood and earthquake risk reductions, there must
have been more needed information such as affected pop-
ulation, damaged properties or economic losses by flood
and by earthquake.

4. Conclusion

First, we developed an urban expansion model to pre-
dict urban expansion from 2020 to 2040 in Yangon,
Myanmar. Then, we proposed flood and earthquake vul-
nerabilities based on a multi-criteria analysis in Yangon.
Next, we demonstrated the simulations of land cover
changes in Yangon from 2020 to 2040 with the multiple
scenarios of flood and earthquake vulnerabilities with the
master plan.

In the experiments, we found that by using the master
plan with the prediction of urban expansion, the predicted
urban expansion was more reliable since the master plan
provides future data. Unfortunately, by using the master
plan, we found some of the predicted urban areas to be lo-
cated in highly vulnerable areas. However, by integrating
flood and earthquake risk reduction with the prediction of
urban expansion, the predicted urban areas can effectively
avoid areas that are highly vulnerable to floods and earth-
quakes. The total flood and earthquake losses in terms of
area confirmed that losses in urban areas will be reduced
by using the master plan with flood and earthquake risk
instead of just using the master plan. By using different
features with the prediction model, multiple scenarios of
predicted urban areas can be available to support decision-
making or policies that can reduce flood and earthquake
risk.
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